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We discuss a technique for solving the Landau-Zener (LZ) problem of finding the probability of
excitation in a two-level system. The idea of time reversal for the Schrödinger equation is employed
to obtain the state reached at the final time and hence the excitation probability. Using this
method, which can reproduce the well-known expression for the LZ transition probability, we solve
a variant of the LZ problem which involves waiting at the minimum gap for a time tw; we find an
exact expression for the excitation probability as a function of tw. We provide numerical results to
support our analytical expressions. We then discuss the problem of waiting at the quantum critical
point of a many-body system and calculate the residual energy generated by the time-dependent
Hamiltonian. Finally we discuss possible experimental realizations of this work.

PACS numbers: 64.60.Ht, 05.70.Jk, 64.70.Tg, 75.10.Jm

I. INTRODUCTION

Introduced in the 1930s independently by Landau and
Zener [1, 2], the Landau-Zener (LZ) transition formula
provides an exact expression for the excitation probabil-
ity in the final state when two levels approach each other
due to a linear variation of the diagonal terms of a two-
level Hamiltonian with an avoided level crossing at the
point of minimum gap. Even after seventy years, the LZ
formula is being applied extensively in problems over a
wide range of modern physics, including neutrino oscil-
lations, atomic physics, quantum optics, and mesoscopic
systems [3]. Recently, it has found several applications
in quantum computations [4] and adiabatic quantum dy-
namics of many-body systems [5]. In particular, the gen-
eral Kibble-Zurek (KZ) scaling [6–9] of the residual en-
ergy or the defect density produced in the final state of a
many-body Hamiltonian following a slow passage across a
quantum critical point (QCP) [10] has been established
for a number of exactly solvable low-dimensional non-
random spin models using the LZ formula [11–14]. All
these systems factorize into decoupled 2 × 2 matrices in
momentum space, and the dynamics gets mapped to a
set of decoupled LZ problems. We note that there are
several other studies of quenching dynamics of different
critical systems [15–17]. Quenching through a multicrit-
ical point [18], repeated passage through a QCP [19] and
periodic variation of a parameter [20], quenching dynam-
ics of a disordered spin chain [21], and the dynamics of an
open system coupled to a heat bath [22] have also been
studied.

In this paper, we address the following question: how
does the transition probability of a LZ problem get al-
tered if we introduce a waiting time tw at the minimum
gap? Here, starting from the ground state at t = −∞,
the system is brought to the point of minimum gap (2∆)
at time t = 0 by linearly varying the diagonal terms of
the Hamiltonian at a rate 1/(2τ). At the minimum gap,

the system is allowed to evolve without any external driv-
ing for a time tw, after which the linear variation is again
resumed up to t = ∞. We study how the probability of
finding the system in the excited state at t = ∞, given
exactly by exp(−2π∆2τ) for the conventional LZ prob-
lem [1], gets modified due to the additional time scale tw.
We then extend our results for the Landau-Zener prob-
lem with waiting to a many-body system whose quench
dynamics through a QCP can be viewed as a set of decou-
pled LZ problems; the system is brought from its initial
ground state at t = −∞ to the QCP at t = 0, where
the Hamiltonian is not changed for a time tw, before it
is again varied in time up to t = ∞. As the relaxation
time of the system diverges at the critical point, the re-
sponse of the system to any perturbation becomes in-
finitely slow; hence the system is no longer able to follow
the ground state and therefore excitations are produced.
As mentioned already, there have been several studies in
this field recently, but the effect of waiting for a time tw
at the critical point of a many-body system has not been
studied. In a many-body system, it is more meaningful
to look at quantities like the residual energy er defined as
the difference in energy between the actual state reached
and the true ground state at the final time, or the density
of defects (wrongly oriented spins) n which is obtained by
integrating the probability of excitations over all modes.

We will study the effect of waiting on the residual
energy er in the final state of the one-dimensional Ki-
taev model following a quench through the QCP along
with waiting. We study the possible correction to the
KZ power law scaling n ∼ 1/τdν/(νz+1), where d is the
spatial dimension and ν and z are the correlation length
and dynamical exponents associated with the QCP [10]
across which the system is swept. To the best of our
knowledge, these questions have not been addressed be-
fore from a theoretical point of view, although experi-
mental results with waiting for single molecular magnets
Mn12Ac are available [23]. The possibility of experimen-
tal realizations of quenching dynamics with waiting in
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optical lattices serves as another motivation. It is inter-
esting to note that a similar concept is used in Ramsey
spectroscopy where a molecule is subjected to an oscillat-
ing perturbation for a time T1 which induces transitions
between two specific levels of the molecule. The pertur-
bation is then switched off for a time T2 after which it
is again switched on for a time T1 and the probability of
excitations is found [24]. We note that LZ sweeps have
been used to generate coherent superpositions in quan-
tum optical experiments [25].
Our results can be summarized as follows. The effect

of a waiting time tw can be understood by visualizing
the dynamics in two parts: from t = −∞ to 0 and from
t = 0 to ∞. If the solution of the first part is known,
the second part can be solved by applying the idea of
time reversal on the first part; in this way, given the
amplitudes of the two basis states at t = 0, one can
find the values of the same at t = ∞. This reproduces
the exact result for the conventional LZ problem. We
then apply the method to a problem with waiting at the
minimum gap to obtain an exact expression for the ex-
citation probability in the final state; this gives simple
forms for both the diabatic (∆2τ → 0) and the adiabatic
(∆2τ → ∞) limit. The probability of excitations exhibits
a sinusoidal behavior in both cases but with different pre-
factors and phases. The method is then used for a many-
body system, namely, the one-dimensional Kitaev model
[26] to obtain the residual energy. We quench this sys-
tem through a QCP by linearly varying the anisotropy
in the interaction, dJ−/dt = 1/τ [13, 27], with a wait-
ing time tw at the QCP. We show that for tw/

√
πτ ≪ 1,

the residual energy shows an exponential decay with tw
given by er ∼ (a/

√
τ )[1+ b exp(−ctw/

√
τ )]. We find that

the parameters a, b and c obtained by an approximate
analytical calculation give a good fit with the results ob-
tained by numerically solving the Schrödinger equation.
The outline of this paper is as follows. We describe our

method of solving the Landau-Zener method in Sec. II A
and obtain an expression for the excitation probability in
the presence of waiting in Sec. II B. In Sec. III, we study
the waiting problem for a many-body system taking the
example of the one-dimensional Kitaev model.

II. LANDAU-ZENER PROBLEM

A. Landau-Zener revisited

To illustrate our method, let us revisit the conventional
two-level LZ problem. Although the model has been ex-
actly solved and the evolution matrix is known exactly
for all times [28, 29], and it has also been studied within a
rotating wave approximation [30], we describe a method
below which can be easily generalized to study LZ dy-
namics with waiting.
The state ψ(t) = C1(t)|1〉+C2(t)|2〉, where |1〉 and |2〉

are the basis states (the initial and final ground states,
respectively), evolves according to the Schrödinger equa-

tion

i
d

dt
ψ(t) =

[

t/(2τ) ∆
∆ −t/(2τ)

]

ψ(t) = Hψ(t), (1)

where ∆ is chosen to be real without any loss of general-
ity. With the initial condition |C1(−∞)|2 = 1, the wave
function at t = 0 is given by ψ(t = 0) = α|1〉 + β|2〉,
where

α = C1(0) = e−
π

4
∆2τ ei

3π

4

√
π

2−iy

Γ(1/2 + iy)
,

β = C2(0) = ∆
√
τ e−

π

4
∆2τ

√

π

2

2−iy

Γ(1 + iy)
, (2)

with y = ∆2τ/2 [28, 31]. Henceforth, (·, ·)T will denote
the transpose of a given row vector. Since ψ(−∞) =
(1, 0)T evolves to ψ(0) = (α, β)T , orthogonality implies
that ψ(−∞) = (0, 1)T must evolve to ψ(0) = (β∗,−α∗)T ,
up to a phase. Using properties of the Gamma functions
[32], one can show that |α|2 + |β|2 = 1 as desired, and

|α|2 − |β|2 = e−π∆2τ .
Let us now ask: what wave functions at t = 0 will

evolve to (1, 0)T and (0, 1)T at t = ∞? To answer this
question, let us multiply the Hamiltonian in Eq. (1) by
σz on both sides, which gives

− i
d

dt
σzψ(t) =

[

−t/(2τ) ∆
∆ t/(2τ)

]

σzψ(t). (3)

Clearly, by substituting t′ = −t and ψ′(t′) = σzψ(t) in
Eq. (3), we recover Eq. (1). Thus, the dynamics occur-
ring in Eq. (1) from t = 0 to −∞ is the same as in Eq. (3)
with t′ going from 0 to ∞ and ψ replaced by σzψ. Since
ψ(−∞) = (1, 0)T evolves to ψ(0) = (α, β)T , the above ar-
gument shows that ψ(0) = σz(α, β)T = (α,−β)T evolves
to ψ(∞) = (1, 0)T through the Hamiltonian given in
Eq. (1). By similar arguments, or by orthogonality, we
see that ψ(0) = σz(β∗,−α∗)T = (β∗, α∗)T evolves to
ψ(∞) = (0, 1)T , again up to a phase. We can now find
the probability of ending in the excited state |1〉 at t = ∞
as follows. We can write ψ(0) = (α, β)T as

ψ(0) =

[(

α
−β

)

(α∗,−β∗) +

(

β∗

α∗

)

(β, α)

](

α
β

)

= (|α|2 − |β|2)
(

α
−β

)

+ 2αβ

(

β∗

α∗

)

(4)

where, in the first line, we introduced an identity opera-
tor using the orthonormal basis (α,−β)T and (β∗, α∗)T .
Since we now know the evolution of (α,−β)T and
(β∗, α∗)T from t = 0 to ∞, we see that

ψ(∞) = (|α|2 − |β|2)
(

1
0

)

+ 2αβ

(

0
1

)

, (5)

where there may be an unimportant phase difference be-
tween the two terms. The probability of excitations at
the final time is the probability to be in state |1〉 and is

thus given by p =
(

|α|2 − |β|2
)2

= e−2π∆2τ which is the
exact expression for the LZ transition probability [1].
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B. Landau-Zener with waiting

We now apply our method to the LZ problem with
waiting. Within the time interval [0, tw], the eigenvectors

of H are given by (1,±1)T /
√
2 with eigenvalues ±∆. So

the wave function changes from ψ(0) = (α, β)T to

ψ(tw) =
α+ β

2
e−i∆tw

(

1
1

)

+
α− β

2
ei∆tw

(

1
−1

)

Inserting the identity operator used in Eq. (4), we get

ψ(tw) =

[(

α
−β

)

(α∗,−β∗) +

(

β∗

α∗

)

(β, α)

]

ψ(tw).

The state at t = ∞ can again be obtained by using the in-
formation about the evolution of (α,−β)T and (β∗, α∗)T :

ψ(∞) = (α∗,−β∗)ψ(tw)

(

1
0

)

+ (β, α)ψ(tw)

(

0
1

)

.

Hence the excitation probability is given by

ptw = |(α∗,−β∗)ψ(tw)|2

=
[

(|α|2 − |β2|) cos(∆tw)− i(α∗β − αβ∗) sin(∆tw)
]2
.

(6)

This expression simplifies in the limits ∆2τ → 0 and ∞.
For ∆2τ = 0, we have ptw = cos2(∆tw); this is expected
as the system does not get any time to evolve and there-
fore remains in the state |1〉 up to t = 0, then oscillates
between the states |1〉 and |2〉 from t = 0 to tw, and
then remains in the superposed state reached at tw for
all t > tw. If ∆

2τ ≪ 1, one gets i(α∗β− β∗α) ≃ ∆
√
πτ

which leads to an approximate expression

ptw ≃ e−π∆2τ cos2[∆(tw +
√
πτ )]. (7)

Comparison with the case ∆2τ = 0 shows a decrease in

amplitude from 1 to e−π∆2τ and a phase shift of
√
πτ .

In the adiabatic limit ∆2τ → ∞, |α|2 − |β|2 = 0, and
one can use the asymptotic expansions of the Gamma
function [32] to obtain the excitation probability

ptw ≃ 1

16∆4τ2
sin2(∆tw). (8)

In the next section, we consider waiting in a many-body
problem, namely, the one-dimensional Kitaev model.

III. WAITING IN KITAEV MODEL

We now use the above results to study the quench-
ing dynamics with waiting at the QCP of the one-
dimensional Kitaev model given by the Hamiltonian
[26, 27]

H =
∑

j

(J1σ
x
2jσ

x
2j+1 + J2σ

y
2j−1σ

y
2j), (9)

where j refers to the site index and σx,y are the Pauli
matrices. The model can be exactly solved in terms of
Jordan-Wigner fermions [33] defined as

aj = (

2j−1
∏

i=−∞
σz
i ) σ

y
2j , bj = (

2j
∏

i=−∞
σz
i ) σ

x
2j+1. (10)

Going to momentum space with ψk ≡ (ak, bk)
T , where

ak and bk are the Fourier transform of aj and bj , and
performing an appropriate unitary transformation, the
Hamiltonian decouples into a 2× 2 form given by [27]

H =

π/2
∑

k=0

ψ†
k Hk ψk,

where Hk = 2

[

J− sin(k) J+ cos(k)
J+ cos(k) −J− sin(k)

]

, (11)

J± = J1± J2 and k ranges from 0 to π/2. The vanishing

of the gap (= 4
√

J2
− sin2 k + J2

+ cos2 k) for the mode k =

π/2 at J− = 0 signals a quantum phase transition of
topological nature [34], with ν = z = 1.
Setting J+ = 1, we now apply the quenching scheme

J−(t) = t/τ for −∞ < t ≤ 0

= 0 for 0 ≤ t ≤ tw

= (t− tw)/τ for tw ≤ t <∞, (12)

which incorporates waiting for a time tw at the QCP. The
Schrödinger equation for each mode is

i
d

dt
ψk(t) = 2

[

J−(t) sin k cos k
cos k −J−(t) sin k

]

ψk(t), (13)

so that the excitation probability for each mode is given
by the modified LZ formula in Eq. (6). In Fig. 1, we
compare the exact analytical expression given in Eq. (6)
with its corresponding approximate form for small ∆2τ
given in Eq. (7); the picture in the figure is reminiscent
of Ramsey fringes. Noting that ∆2τ = τ cos2 k/ sink ≃
0.00012 for the mode shown in Fig. 1, we can use the
diabatic limit result in Eq. (7),

pk,tw ≃ e−πτ cos2 k/ sin k cos2[2 cosk(tw +
1

2

√

πτ

sin k
)]. (14)

This gives a good understanding of the peak heights and
phase shift in Fig. 1.
The variation of pk,tw vs k for different tw (shown in

Fig. 2 with τ = 10 ) shows secondary maxima, the peak
heights of which increase as tw increases, in contrast to
the conventional quenching case [27]. The increase in the
number of maxima with increasing tw can be explained
by the expression in Eq. (14) which has maxima at

cos k =
mπ

2(tw +
√
πτ/2)

, m = 0, 1, 2, · · · (15)

in the limit of small k. With increasing tw, Eq. (15) is
satisfied by more and more values of k which still satisfy
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FIG. 1: Variation of probability of excitations pk with waiting
time tw, for τ = 1 and k = 1.56. The dots correspond to the
exact solution given in Eq. (6), whereas the line corresponds
to the approximate analytical expression given in Eq. (7).
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FIG. 2: (Color online) Variation of probability of excitations
pk,tw with k for τ = 10 obtained by numerically solving the
Schrödinger equation, for tw = 0 (solid red line), 4 (dotted
black line) and 8 (dashed blue line).

the condition that cos k is small enough so that the peak
height given by the exponential pre-factor in Eq. (14) is
not very small. Further, for a given value of m in Eq.
(15), cos k decreases as tw increases which justifies the
increase in the peak height given by Eq. (14).
The residual energy per site, er, is given by the differ-

ence of the expectation value of the operator

O =
1

N

∑

m

(σx
2mσ

x
2m+1 − σy

2m−1σ
y
2m) (16)

between the many-body state that is actually reached
and the true ground state of H at t = ∞ (this is also the
ground state of O); N denotes the number of sites. We
find that er is given by

er =

∫ π/2

0

dk

2π
8 sink pk,tw . (17)

Although this expression cannot be evaluated analyti-
cally in general, one can obtain an approximate expres-

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 0.135

 0.14

 0.145

 0  0.5  1  1.5  2  2.5  3

e r

tw

numerical
analytical

FIG. 3: Variation of residual energy er with waiting time tw,
for τ = 10. The line corresponds to the integral given in Eq.
(17), while the dotted line corresponds to Eq. (18).

sion when τ ≫ 1 and tw/
√
πτ ≪ 1. Most of the contribu-

tion to the integral in Eq. (17) then comes from k close
to π/2 in Eq. (14). Approximating cos k ≃ π/2− k and
sin k ≃ 1, redefining k = π/2 − k and finally extending
the limits of integration from [0, π/2] to [0,∞], we obtain

er =
2

π

∫ ∞

0

dk e−πτk2

[

1 + cos[4k(tw +
1

2

√
πτ )]

]

=
1

π
√
τ
[ 1 + e−4(tw+ 1

2

√
πτ)2/(πτ) ]

≃ 0.32√
τ

[ 1 + 0.37 e−2.3tw/
√
τ ], (18)

where we have used the approximation tw/
√
πτ ≪ 1 in

the third line. In Fig. 3, the numerical results obtained
by solving the Schrödinger equation are compared with
the approximate analytical expression given in Eq. (18).
This comparison shows that the numerical and analytical
expressions are in good agreement.
The decrease in the residual energy as a consequence of

waiting can be understood as follows. For slow driving,
only modes close to the critical modes contribute. For a
mode with momentum k, the frequency of oscillations of
|C1(t)|2 between the two levels during waiting is propor-
tional to ∆k = 2 cosk; this vanishes as k approaches the
critical value π/2, leading to a diverging time period T .
Further, the vanishing of the off-diagonal element in the
Hamiltonian in Eq. (13) implies that the modes close to
k = π/2 will remain close to the excited state under time
evolution, i.e., |C1| will remain close to 1. Now consider
the variation of the diabatic excitation probability |C1|2
between t = 0 and t = tw. The waiting gives |C1| the
time to oscillate to |C2|. Since we are considering only
values of tw much smaller than the time period T , we en-
counter only the decreasing part of the oscillating |C1|2
such that when the variation of the parameter is again
started at tw, |C1(tw)|2 < |C1(t = 0)|2. This reduces the
probability of excitations at the final time.
The advantage of studying the waiting problem in the

Kitaev model is that the minimum gap for all the modes
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occurs at the same time (t = 0) which makes the analyt-
ical calculations easier. In many other models, the mini-
mum gaps for the different modes, given by the vanishing
of the diagonal term of the 2 × 2 Hamiltonians, do not
occur at the same time. This makes it difficult to specify
the precise time at which the waiting should be initiated
so that our analytical results can be applied. But one
can prove that in the limit of large τ , the minima for all
the modes approach the time at which the minima of the
critical mode occurs. For large τ , we therefore expect our
analysis to go through with small corrections to the prob-
ability of excitations given in Eq. (14). To understand
why this is so, consider the quenching of the transverse
magnetic field h in the transverse field XY model [12],
where the diagonal term of the equivalent 2 × 2 matrix
is h + J cos k and the off-diagonal term is γ sin k, with
J = Jx + Jy and γ = Jx − Jy. By expanding the di-
agonal term about the critical mode k = 0, multiplying
the corresponding Schrödinger equation with

√
τ and re-

defining t′ = t/
√
τ , the diagonal term can be rewritten

as t′ + 1/(2γ
√
τ ), where the characteristic momentum

scale is given by 1/(γ
√
τ ) by the LZ tunneling formula.

Clearly, in the limit τ → ∞, the minima for the mode
occurs approximately at t′ = 0. These arguments are
applicable to the modes close to the critical mode; the
modes far away from the critical mode anyway do not
contribute to the residual energy or defect density as the
excitation gap is very large.
The waiting problem is also interesting from an exper-

imental point of view. In Ref. 23, the relaxation dynam-
ics with waiting at a resonance was studied for single
molecular magnets (SMM) called Mn12Ac, where each
molecule has total spin S = 10. As the magnetic field in
the ẑ-direction is varied from a large negative to a large
positive value, Sz changes from 10 to −10. In Ref. [23],
the magnetic field is swept to a resonance value, start-
ing from a field of −6 T , where it is held for different
waiting times causing tunneling of the spins; eventually
the field is brought back to its initial value. The number
of molecules which have tunneled through the barrier,
measured using electron paramagnetic resonance tech-
niques, shows nearly a stretched exponential decay with
tw, where the decay constant is governed by the relax-
ation time of the system. Though there are limitations
in mapping SMM to a LZ problem for all quenching rates
[35], it is worth noting that there have been experimental
studies on the effect of waiting at the resonance, and im-
portant quantities like the relaxation time of the system
can be obtained from the waiting problem. Although, in
our case, J− is driven to a final value of +∞ at t = +∞,
we do observe a qualitatively similar behavior, i.e., an
increase in the tunneling probability to the second state

with increasing waiting time. We believe that similar ex-
periments with waiting and forward driving of the mag-
netic field can be performed and it would be interesting
to compare the results with our predictions. However,
if the non-linear term of a SMM Hamiltonian [35] dom-
inates, one may need to look at non-linear LZ problems
[36] with waiting.

It may be mentioned here that quenching with waiting
can be studied if the Kitaev model can be experimen-
tally realized using cold atoms and molecules trapped in
an optical lattice as proposed in Ref. 37. In this pro-
posal, each of the couplings can be independently tuned
using different microwave radiations. It is possible to
investigate the evolution of the spatial correlation func-
tion of the operator ibnan+r, defined in Ref. 13 as a
function of various parameters, where an and bn denote
some Majorana fermions operators. This spatial correla-
tion function depends on pk which we have already ob-
tained for the waiting case. Then the evolution of defect
correlations can be detected by spatial noise correlation
measurements as discussed in Ref. 38.

IV. CONCLUSION

To summarize, the technique proposed here not only
provides an exact result for the standard LZ problem
but also enables us to estimate the excitation probabil-
ity for the dynamics with waiting at the minimum gap
and the residual energy for the related quenching dynam-
ics of some many-body systems like the one-dimensional
Kitaev model. We can derive simple expressions in some
limiting situations and the approximate analytical results
are in excellent agreement with numerical results when
tw/

√
πτ << 1. The arguments leading up to Eq. (18) in-

dicate that the KZ scaling law 1/τdν/(νz+1) will generally
remain valid in the presence of waiting, except that the
function multiplying the scaling term has a piece which
decays with increasing tw. Finally, we have discussed
some possibilities for experimentally testing our results.
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