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Minimization Problems Based on

Relative α-Entropy I: Forward Projection
M. Ashok Kumar and Rajesh Sundaresan

Abstract

Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative
entropies, which we term relative α-entropies (denoted Iα), arise as redundancies under mismatched compression when cumulants
of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a general-
ization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative α-entropies behave like
squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative α-entropies on closed and convex
sets are shown to exist. Such minimizations generalize the maximum Rényi or Tsallis entropy principle. The minimizing probability
distribution (termed forward Iα-projection) for a linear family is shown to obey a power-law. Other results in connection with
statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related
minimization problem of interest in robust statistics that leads to a reverse Iα-projection is studied.

Index Terms

Best approximant; exponential family; information geometry; Kullback-Leibler divergence; linear family; power-law family;
projection; Pythagorean property; relative entropy; Rényi entropy; Tsallis entropy.

I. INTRODUCTION

Relative entropy1 or Kullback-Leibler divergence I (P‖Q) between two probability measures is a fundamental quantity

that arises in a variety of situations in probability theory, statistics, and information theory. In probability theory, it arises as

the rate function for estimating the probability of a large deviation for the empirical measure of independent samplings. In

statistics, for example, it arises as the best error exponent in deciding between two hypothetical distributions for observed data.

In Shannon theory, it is the penalty in expected compressed length, namely the gap from Shannon entropy H(P ), when the

compressor assumes (for a finite-alphabet source) a mismatched probability measure Q instead of the true probability measure

P .

Relative entropy also brings statistics and probability theory together to provide a foundation for the well-known maximum

entropy principle for decision making under uncertainty. This is an idea that goes back to L. Boltzmann, was popularized

by E. T. Jaynes [3], and has its foundation in the theory of large deviation. Suppose that an ensemble average measurement

(say sample mean, sample second moment, or any other similar linear statistic) is made on the realization of a sequence of

independent and identically distributed (i.i.d.) random variables. The realization must then have an empirical measure that

obeys the constraint placed by the measurement – the empirical measure must belong to an appropriate convex set, say E.

Large deviation theory tells us that a special member of E, denoted P ∗, is overwhelmingly more likely than the others. If the

alphabet X is finite (with cardinality |X|), and the prior probability (before measurement) is the uniform measure U on X, then

P ∗ is the one that minimizes the relative entropy

I (P‖U) = log |X| −H(P ),

which is the same as the one that maximizes (Shannon) entropy, subject to P ∈ E. This explains why the principle is called

maximum entropy principle. In Jaynes’ words, “... it is maximally noncommittal to the missing information” [3].
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1The relative entropy of P with respect to Q is defined as

I (P‖Q) :=
∑

x∈X

P (x) log
P (x)

Q(x)

and the Shannon entropy of P is defined as

H(P ) := −
∑

x∈X

P (x) logP (x).

The usual convention is p log p
q
= 0 if p = 0 and +∞ if p > q = 0.
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As a physical example, let us tag a particular molecule in the atmosphere. Let X denote the height of the molecule in

the atmosphere. Then the potential energy of the molecule is mgX . Let us suppose that the average potential energy is held

constant, that is, E[mgX ] = c, a constant. Then the probability distribution of the height of the molecule is taken to be the

exponential distribution λ exp (−λx), where λ = mg/c. This is also the maximum entropy probability distribution subject to

first moment constraint [4].

More generally, if the prior probability (before measurement) is Q, then P ∗ minimizes I (P‖Q) subject to P ∈ E. Something

more specific can be said: P ∗ is the limiting conditional distribution of a “tagged” particle under the conditioning imposed by

the measurement. This is called the conditional limit theorem or the Gibbs conditioning principle; see for example Campenhout

and Cover [5] or Csiszár [6] for a more general result.

It is well-known that I (P‖Q) behaves like “squared Euclidean distance” and has the “Pythagorean property” (Csiszár

[7]). In view of this and since P ∗ minimizes I (P‖Q) subject to P ∈ E, one says that P ∗ is “closest” to Q in the relative

entropy sense amongst the measures in E, or in other words, “P ∗ is the forward I -projection of Q on E”. Motivated by

the above maximum entropy and Gibbs conditioning principles, I -projection was extensively studied by Csiszár [6], [7],

Csiszár and Matúš [8], Csiszár and Shields [9], and Csiszár and Tusnády [10]. More recently, minimizations of general entropy

functionals with convex integrands were studied by Csiszár and Matúš [11]. These include Bregman’s divergences and Csiszár’s

f -divergences. I -minimization also arises in the contraction principle in large deviation theory (see for example Dembo and

Zeitouni’s [12, p.126]).

This paper is on projections or minimization problems associated with a parametric generalization of relative entropy. To

see how this parametric generalization arises, we return to our remark on how relative entropy arises in Shannon theory. For

this, we must first recall how Rényi entropies are a parametric generalization of the Shannon entropy.

Rényi entropies Hα(P ) for α ∈ (0, 1) play the role of Shannon entropy when the normalized cumulant of compression

length is considered instead of expected compression length. Campbell [13] showed that

min
1

nρ
logE [exp{ρLn(X

n)}] → Hα(P ) (as n → ∞)

for an i.i.d. source with marginal P . The minimum is over all compression strategies Ln that satisfy the Kraft inequality2,

α = 1/(1 + ρ), and ρ > 0 is the cumulant parameter. We also have limα→1 Hα(P ) = H(P ), so that Rényi entropy may be

viewed as a generalization of Shannon entropy.

If the compressor assumed that the true probability measure is Q, instead of P , then the gap in the normalized cumulant’s

optimal value is an analogous parametric divergence quantity3, which we shall denote Iα(P,Q) [15]. The same quantity4 also

arises when we study the gap from optimality of mismatched guessing exponents. See Arikan [16] and Hanawal and Sundaresan

[17] for general results on guessing, and see Sundaresan [18], [15] on how Iα(P,Q) arises in the context of mismatched

guessing. Recently, Bunte and Lapidoth [19] have shown that the Iα(P,Q) also arises as redundancy in a mismatched version

of the problem of coding for tasks.

As one might expect, it is known that (see for example, Sundaresan [15, Sec. V-5)] or Johnson and Vignat [20, A.1])

limα→1 Iα(P,Q) = I (P‖Q), so that we may think of relative entropy as I1(P,Q). Thus Iα is a generalization of relative

entropy, i.e., a relative α-entropy5.

Not surprisingly, the maximum Rényi entropy principle has been considered as a natural alternative to the maximum entropy

principle of decision making under uncertainty. This principle is equivalent to another principle of maximizing the so-called

Tsallis entropy which happens to be a monotone function of the Rényi entropy. Rényi entropy maximizers under moment

constraints are distributions with a power-law decay (when α < 1). See Costa et al. [22] or Johnson and Vignat [20]. Many

statistical physicists have studied this principle in the hope that it may “explain” the emergence of power-laws in many naturally

occurring physical and socio-economic systems, beginning with Tsallis [23]. Based on our explorations of the vast literature on

this topic, we feel that our understanding, particularly one that ought to involve a modeling of the dynamics of such systems

with the observed power-law profiles as equilibria in the asymptotics of large time, is not yet as mature as our understanding

of the classical Boltzmann-Gibbs setting. But, by noting that Iα(P,U) = log |X| −Hα(P ), we see that both the maximum

Rényi entropy principle and the maximum Tsallis entropy principle are particular instances of a “minimum relative α-entropy

principle”:

minimize Iα(P,Q) over P ∈ E.

We shall call the minimizing P ∗ as the forward Iα-projection of Q on E.

The main aim of this paper is to study forward Iα-projections in general measure spaces. Our main contributions are on

existence, uniqueness, and structure of these projections. We have several motivations to publish our work.

2A compression strategy Ln : Xn → {0, 1, 2, . . . } assigns a target codeword length Ln(xn) to each string xn ∈ Xn.
3Blumer and McEliece [14], in their attempt to find better upper and lower bounds on the redundancy of generalized Huffman coding, were indirectly

bounding this parameterized divergence.
4We suggest the pronunciation “I-alpha” for Iα.
5This terminology is from Lutwak, et al. [21].
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• We provide a rather general sufficient condition on the constraint set under which a forward Iα-projection exists and is

unique. This can enable statistical physicists to speak of the Rényi entropy maximizer and explore its properties even if

the maximizer is not known explicitly. While the existence and uniqueness of Iα-projection for closed convex sets E was

shown for the finite alphabet case by Sundaresan [15], here we study more general measure spaces (for example Rn).

• Unlike relative entropy, its generalization relative α-entropy does not, in general, satisfy the well-known data processing

inequality, nor is it in general convex in either of its arguments. Nevertheless, there is a remarkable parallelism between

relative entropy and relative α-entropy. In particular, they share the “Pythagorean property” and behave like squared

Euclidean distance. This too was explored by Sundaresan [15] for the finite alphabet case, and we wish to extend the

parallels to more general alphabet spaces.

• We provide information on the structure of the Rényi entropy maximizer, under linear statistical constraints, whenever

the maximizer exists. This can provide statistical physicists a quick means to check if their empirical observations in a

particular physical setting conform to the maximum Rényi entropy principle. It also provides a means to estimate the

appropriate α for a particular physical setting. Interestingly, the Rényi entropy maximizers belong to a “power-law family”

of distributions that are the natural parametric generalizations of the Shannon entropy maximizers, namely the exponential

family of distributions.

• In a companion paper, we shall show that a robust parameter estimation problem is a “reverse Iα-projection” problem,

where the minimization is with respect to the second argument of Iα. If this reverse projection is on a power-law family,

then one may turn the reverse projection into a forward projection of a specific distribution on an appropriate linear family.

In that paper we shall also explore the geometric relationship between the power-law and the linear families.

• One may think of the maximum entropy principle or the minimization of relative entropy as a “projection rule”; see Section

VI for projection rules with some desired properties. Three of these properties are “regularity”, “locality”, and “subspace-

transitivity”. It turns out that the Iα-based projection rule is regular, subspace-transitive when α < 1, but “nonlocal”.

Any regular, subspace-transitive, and local projection rule is generated by Bregman’s divergences of the sum-form [24].

In our, as yet not very successful, attempt to characterize all regular, subspace-transitive, but possibly nonlocal projection

rules, we wished to understand as much as we could about a particular nonlocal projection rule. The understanding we

have gained may be of use to the wider community interested in axiomatic approaches to abstract inference problems.

It is known (see for example [15]) that Iα(P,Q) is the more commonly studied Rényi divergence of order 1/α, not of the

original measures P and Q, but of their escort measures P ′ and Q′, where P ′(x) = P (x)α/Z(P ), and Z(P ) is the normalization

that makes P ′ a probability measure. Q′ is similarly defined. While the Rényi divergences arise naturally in hypothesis testing

problems (see for example Csiszár [25]), Iα arises more naturally as a redundancy for mismatched compression, as discussed

earlier. Moreover, Iα(P,Q) is a certain monotone function of Csiszár’s f -divergence between P ′ and Q′. As a consequence

of the appearance of the escort measures, the data-processing property satisfied by the f -divergences does not hold for the

Iα-divergences. It is therefore all the more intriguing that it is neither the f -divergences nor the Rényi divergences but the

Iα-divergences that share the Pythagorean property with relative entropy. However, quite recently, van Erven and Harremoës

[26] showed that Rényi divergences have a Pythagorean property when the forward projection is on a so-called α-convex set.

The paper is organized as follows. In Section II, we formally define Iα and establish some of its basic algebraic and

topological properties, those desired of an information divergence. In Section III, we establish the existence of Iα-projection

on closed (in an appropriate topology) and convex sets. The proof for the case α < 1 is analogous to that for relative entropy

[7, Th. 2.1]. The proof for the case α > 1 exploits some functional analytic tools. In Section IV, we present the Pythagorean

property in generality and derive some of its immediate consequences in connection with the forward projection. In Section

V, we characterize the forward Iα-projection on a linear family of probability measures, whenever it exists. In Section VI,

we establish a desirable subspace transitivity property and further prove the convergence of an iterative method for finding the

forward Iα-projection on linear families. In the concluding Section VII, we highlight some interesting open questions.

The companion paper [27] will explore the orthogonality between the power-law and the linear families, will exploit this

orthogonality in a robust parameter estimation problem, and will study the reverse Iα-projection in detail.

II. THE RELATIVE α- ENTROPY

We begin by defining relative α-entropy on a general measure space for all α > 0 except α = 1. As α → 1 our definition

will approach the usual relative entropy or Kullback-Leibler divergence.

Let P and Q be two probability measures on a measure space (X,X ). Let α ∈ (0,∞) with α 6= 1. Let µ be a dominating

σ-finite measure on (X,X ) with respect to which P and Q are both absolutely continuous, denoted P ≪ µ and Q ≪ µ. Write

p = dP/dµ and q = dQ/dµ and assume that p and q belong to the complete topological vector space Lα(µ) with metric

d(h, g) =

{

(∫

|h− g|αdµ
)1/α

if α > 1,
∫

|h− g|αdµ if α < 1.

We shall use the notation

‖h‖ :=

(
∫

|h|αdµ

)1/α
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even though ‖ · ‖, as defined, is not a norm for α < 1. For convenience we suppress the dependence of d(·, ·) and ‖ · ‖ on α;

but this dependence should be borne in mind. Throughout we shall restrict attention to probability measures whose densities

with respect to µ are in Lα(µ). The Rényi entropy of P of order α (with respect to µ) is defined to be

Hα(P ) :=
1

1− α
log

(
∫

X

pαdµ

)

. (1)

Consider the escort measures P ′ and Q′ having densities p′ and q′ with respect to µ defined by

dP ′

dµ
= p′ :=

pα
∫

pαdµ
and

dQ′

dµ
= q′ :=

qα
∫

qαdµ
. (2)

Once again, the dependence of p′ and q′ on α is suppressed for convenience. By setting α = 1
1+ρ , we have the re-parametrization

in terms of ρ with −1 < ρ < ∞, ρ 6= 0, and ρ = α−1 − 1. Define

f(u) := sgn(ρ) · (u1+ρ − 1), u ≥ 0.

Csiszár’s f -divergence [28] between two probability measures P and Q, both absolutely continuous with respect to µ, is given

by

If (P,Q) :=

∫

qf

(

p

q

)

dµ. (3)

In the above definition we use the following conventions:

0 · f

(

0

0

)

= 0,

and for a > 0,

0 · f
(a

0

)

=

{

∞ if ρ > 0,

0 if ρ < 0.

Since f is strictly convex when ρ 6= 0, by Jensen’s inequality, If (P,Q) ≥ 0 with equality if and only if P = Q.

Definition 1 (Relative α-entropy): The α-entropy of P relative to Q (or relative α-entropy of P with respect to Q, or simply

relative α-entropy) is defined as

I
µ
α (P,Q) :=

1

ρ
log [sgn(ρ) · If (P

′, Q′) + 1] . (4)

I µ
α depends on the reference measure µ because the densities p′ and q′ defined in (2) do. However, for brevity, we omit the

superscript µ and ask the reader to bear the dependence on µ in mind. For the information theoretic and statistical physics

motivating examples in Section I, µ is the counting measure or the Lebesgue measure depending on whether X is finite or Rd.

From the conventions used to define If , we have Iα(P,Q) = ∞ when either

• α < 1 and P 6≪ Q, or

• α > 1 and P and Q are mutually singular.

Abusing notation a little, when speaking of densities, we shall some times write Iα(p, q) for Iα(P,Q). Let us reemphasize

that implicit in our definition of Iα(P,Q) is the assumption that p and q are both in Lα(µ).
The following are some alternative expressions of Iα that are used in this paper:

Iα(P,Q) =
α

1− α
log

∫

p

‖p‖

(

q

‖q‖

)α−1

dµ (5)

=
α

1− α
log

∫

pqα−1dµ−
1

1− α
log

∫

pαdµ+ log

∫

qαdµ. (6)

When X is discrete (with µ being the counting measure on X), the probability measures may be viewed as finite or countably

infinite dimensional vectors. In this case, we may write

Iα(P,Q) =
α

1− α
log

[

∑

x

P (x)

‖P‖

(

Q(x)

‖Q‖

)α−1
]

(7)

=
α

1− α
log

[

∑

x

P (x)Q(x)α−1
]

−
1

1− α
log

∑

x

P (x)α + log
∑

x

Q(x)α. (8)

We now summarize some properties of relative α-entropy.

Lemma 2: The following properties hold.

a) (Positivity). Iα(P,Q) ≥ 0 with equality if and only if P = Q.
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b) (Generalization of relative entropy). Let Iα(P,Q) < ∞ for some α = αl < 1 and simultaneously for some α = αu > 1.

Then Iα(P,Q) is well-defined for all α ∈ [αl, αu] \ {1}, and

lim
α→1

Iα(P,Q) = I (P‖Q),

where I (P‖Q) is the relative entropy of P with respect to Q.

c) (Relation to Rényi divergence).

Iα(P,Q) = D1/α(P
′‖Q′),

where

Dβ(P‖Q) :=
1

β − 1
log

∫

pβq1−βdµ

is the Rényi divergence of order β.

d) (Relation to Rényi entropy). Let |X| < ∞ and let U be the uniform probability measure on X. Then Iα(P,U) =
log |X| −Hα(P ).

e) (Rényi entropy maximizer under a covariance constraint). Let X = Rn and let µ be the Lebesgue measure on Rn. For

α > n/(n + 2) and α 6= 1, define the constant bα = (1 − α)/(2α − n(1 − α)). With C a positive definite covariance

matrix, the function

φα,C(x) = Z−1
α

[

1 + bα · xTC−1x
]

1

α−1

+
,

with [a]+ := max{a, 0} and Zα the normalization constant, is the density function of a probability measure on Rn whose

covariance matrix is C. Furthermore, if g is the density function of any other random vector with covariance matrix C,

then

Iα(g, φα,C) = Hα(φα,C)−Hα(g). (9)

Consequently φα,C is the density function of the Rényi entropy maximizer among all Rn-valued random vectors with

covariance matrix C.

Proof: See Appendix A.

Remark 1: For relative entropy (α = 1), the analog of (9) under a covariance constraint is

I (g‖φ) = H(φ) −H(g),

where H is differential entropy and φ is the Gaussian distribution with the same covariance as g [4, Th. 8.6.5]. In Section V

we shall study Rényi entropy maximizers under more general linear constraints.

Remark 2: While the numerical value of relative entropy I (P‖Q) does not depend on the dominating measure µ, recall

that Iα(P,Q) does depend on µ in general.

Analogous to the property that p 7→ I (p‖q) is lower semicontinuous in the topology on L1(µ) arising from the total

variation metric [29, Sec. 2.4, Assertion 5], we have the following.

Proposition 3 (Lower semicontinuity in the first argument): For a fixed q, consider p 7→ Iα(p, q) as a function on Lα(µ).
This function is continuous for α > 1 and lower semicontinuous for α < 1.

Proof: See Appendix B.

Remark 3: When α < 1, Iα(·, Q) is lower semicontinuous, but not necessarily continuous. To see this, let X be finite. Let

Pn, P,Q be probability measures on X such that all Pn’s have full support, i.e., Pn(x) > 0 for all x ∈ X, but Q(x0) = 0 for

some x0 ∈ X, P ≪ Q, and finally Pn → P . Then Iα(Pn, Q) = ∞ for all n, but Iα(P,Q) < ∞.

Remark 4: If however X is finite and Q has full support, then Iα(·, Q) is indeed continuous and this can be seen by taking

the limit term by term in (7).

We now address the behavior as a function of q.

Proposition 4: Fix α > 0, α 6= 1. For a fixed p, the mapping q 7→ Iα(p, q) is lower semicontinuous in Lα(µ).
Proof: See Appendix C

Remark 5: When X is finite, with +∞ as a potential limiting value, Iα(P, ·) is continuous for all α > 0, α 6= 1, as is

easily seen by taking term-wise limits in the summation in (7).
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Fig. 1: The usual Apollonius theorem would be, with λ = 1
2 , 1

2 |
−−→
RP1|2 +

1
2 |
−−→
RP0|2 = 1

2 |
−−−−→
R1,0P1|2 +

1
2 |
−−−−→
R1,0P0|2 + |

−−−→
R1,0R|2.

Here, |
−−→
RP1|

2 is replaced by the asymmetric If (P
′
1, R

′), etc., and the equality by an inequality whose direction depends on

α < 1 or α > 1.

We next establish quasi-convexity of Iα in the first argument, i.e., for every fixed q and real number τ , the lower level sets

B(q, τ) := {p : Iα(p, q) ≤ τ} (or “Iα-balls”) are convex.

Proposition 5: Fix α > 0, α 6= 1. For a fixed q, the mapping p 7→ Iα(p, q) is quasi-convex in Lα(µ).
Proof: See Appendix D

Remark 6: In general, for both α < 1 and α > 1, Iα is not convex in either of its arguments. Moreover, Iα does not

satisfy the data processing inequality while relative entropy and more generally Csiszár’s f -divergences do.

III. EXISTENCE AND UNIQUENESS OF THE FORWARD Iα-PROJECTION

In this section, we shall introduce the notion of a forward Iα-projection of a probability measure on a subset of probability

measures. We shall also prove a sufficiency result for the existence of the forward Iα-projection. We begin by first proving a

useful inequality relating f -divergences. This is an inequality that turns out to be the analog of the parallelogram identity of

[7] for relative entropy (α = 1) and the analog of the Apollonius Theorem in plane geometry (see, for e.g., Bhatia [30, p. 85]).

While these analogs show an equality, our generalization is at the cost of a weakening of the equality to an inequality.

Proposition 6 (Extension of Apollonius Theorem): Let α < 1. Let P0, P1, R be probability measures that are absolutely

continuous with respect to µ, and let the corresponding Radon-Nikodym derivatives p0, p1, and r be in Lα(µ). Assume

0 ≤ λ ≤ 1. We then have

λIf (P
′
1, R

′) + (1− λ)If (P
′
0, R

′)− λIf (P
′
1, R

′
1,0)− (1− λ)If (P

′
0, R

′
1,0) ≥ If (R

′
1,0, R

′), (10)

where

R1,0 =

λ
‖p1‖P1 +

1−λ
‖p0‖P0

λ
‖p1‖ + 1−λ

‖p0‖
. (11)

When α > 1, the reversed inequality holds in (10).

Proof: See Figure 1 for an interpretation of (10) as an analog of the Apollonius Theorem. We first recognize that

If (P
′, Q′) = sgn(ρ)

[

∫

p

‖p‖

(

q

‖q‖

)α−1

dµ− 1

]

. (12)

Let r1,0 = dR1,0/dµ. Using (12), the left-hand side of (10) can be expanded to

sgn(ρ)

∫

λp1
‖p1‖

[

(

r

‖r‖

)α−1

−

(

r1,0
‖r1,0‖

)α−1
]

dµ

+sgn(ρ)

∫

(1− λ)p0
‖p0‖

[

(

r

‖r‖

)α−1

−

(

r1,0
‖r1,0‖

)α−1
]

dµ

(a)
= sgn(ρ)

∫

r1,0
‖r1,0‖

[

(

r

‖r‖

)α−1

−

(

r1,0
‖r1,0‖

)α−1
]

dµ

×

[

λ

‖p1‖
+

1− λ

‖p0‖

]

‖r1,0‖

(b)
=

[

λ

‖p1‖
+

1− λ

‖p0‖

]

‖r1,0‖ · If (R
′
1,0, R

′),
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where (a) follows from (11) and after a multiplication and a division by the scalar ‖r1,0‖; (b) follows from (12). The lemma

would follow if we can show
(

λ

‖p1‖
+

1− λ

‖p0‖

)

‖r1,0‖ ≥ 1

for α < 1, and the reversed inequality for α > 1. But these are direct consequences of Minkowski’s inequalities for α < 1
and α > 1 applied to (11).

Let us now formally define what we mean by a forward Iα-projection.

Definition 7: If E is a set of probability measures on (X,X ) such that Iα(P,R) < ∞ for some P ∈ E, a measure Q ∈ E
satisfying

Iα(Q,R) = inf
P∈E

Iα(P,R) =: Iα(E, R) (13)

is called a forward Iα-projection of R on E.

For a set E of probability measures on (X,X ), let

E :=

{

p =
dP

dµ
: P ∈ E

}

be the corresponding set of µ-densities. We shall assume that E ⊂ Lα(µ).
We are now ready to state our first main result on the existence and uniqueness of the forward Iα-projection.

Theorem 8 (Existence and uniqueness of the forward Iα-projection): Fix α > 0, α 6= 1. Let E be a set of probability

measures whose corresponding set of density functions E is convex and closed in Lα(µ). Let R be a probability measure (with

density r) and suppose that Iα(P,R) < ∞ for some P ∈ E. Then R has a unique forward Iα-projection on E.

Remark 7: This is a generalization of Csiszár’s projection result [7, Th. 2.1] for relative entropy (α = 1). The analog of “E
is closed in Lα(µ)” for relative entropy is closure in the topology arising from the total variation metric, one of the hypotheses

in [7, Th. 2.1]. The proof ideas are different for the two cases α < 1 and α > 1. The proof for α < 1 is a modification of

Csiszár’s approach in [7], and is similar to the classical proof of existence and uniqueness of the best approximant of a point

(in a Hilbert space) from a given closed and convex set of the Hilbert space. (See, for e.g., [30, Ch. 11, Th. 14]). The proof for

α > 1 exploits the reflexive property of the Banach space Lα(µ). This alternative approach is required because the inequality

in the extension of Apollonius Theorem (Proposition 6) is in a direction that renders the classical approach inapplicable. We

are indebted to Pietro Majer for suggesting some key steps for the α > 1 case on the mathoverflow.net forum.

Remark 8: In general, when α 6= 1, the forward Iα-projection depends on the reference measure µ. The case α = 1 of

relative entropy is however special in that the forward I1-projection does not depend on the reference measure µ.

Remark 9: The above result was established by Sundaresan [15, Prop. 23] for finite X. That proof relied on the compactness

of E. The current proof works for general measure spaces.

Proof: (a) We first consider the case α < 1.

Existence of forward projection: Pick a sequence (Pn) in E such that If (P
′
n, R

′) < ∞ and

If (P
′
n, R

′) → inf
P∈E

If (P
′, R′). (14)

Apply Proposition 6 with λ = 1
2 to get

1
2If (P

′
m, R′) + 1

2If (P
′
n, R

′)− 1
2If (P

′
m, R′

m,n)−
1
2If (P

′
n, R

′
m,n) ≥ If (R

′
m,n, R

′), (15)

where

Rm,n =

1
‖pm‖Pm + 1

‖pn‖Pn

1
‖pm‖ + 1

‖pn‖
.

Rm,n ∈ E on account of the convexity of E. Using If (·, ·) ≥ 0 and then rearranging (15), we get

0 ≤ 1
2If (P

′
m, R′

m,n) +
1
2If (P

′
n, R

′
m,n) (16)

≤ 1
2If (P

′
m, R′) + 1

2If (P
′
n, R

′)− If (R
′
m,n, R

′). (17)

Now let m,n → ∞. We claim the expression on the right-hand side of (17) must approach 0. Indeed, that the liminf of the

right-hand side of (17) is at least 0 is clear from the inequalities (16) and (17). But the limsup is at most 0 because both

If (P
′
m, R′) and If (P

′
n, R

′) approach the infimum value, and If (R
′
m,n, R

′) is at least this infimum value for each m and n.

This establishes the claim.



8

Consequently, the right-hand side of (16) converges to 0. Using this and the nonnegativity of If (·, ·), we get

lim
m,n→∞

If (P
′
m, R′

m,n) = 0. (18)

From [31, Th. 1], a generalization of Pinsker’s inequality for f -divergence under α < 1, and with |P − Q|TV denoting the

total variation distance between probability measures P and Q, we have

lim
m,n→∞

|P ′
m −R′

m,n|TV = 0.

The triangle inequality for the total variation metric then yields

|P ′
m − P ′

n|TV ≤ |P ′
n −R′

m,n|TV + |P ′
m −R′

m,n|TV → 0

as m,n → ∞, i.e., the sequence (p′n) is a Cauchy sequence in L1(µ). It must therefore converge to some g in L1(µ), i.e.,

lim
n→∞

∫

|p′n − g| dµ = 0. (19)

It follows that
∫

p′ndµ →
∫

gdµ, and since
∫

p′ndµ = 1 for all n, we must have
∫

gdµ = 1.

From the L1(µ) convergence in (19), we also have p′n → g in [µ]-measure.

We will now demonstrate that the probability measure with µ-density proportional to g1/α is in E and is a forward Iα-

projection, thereby establishing existence.

In view of the convergence in [µ]-measure and the upper bound
∣

∣

∣
(p′n)

1/α − g1/α
∣

∣

∣

α

≤ 2α [p′n + g] ,

we can apply the generalized version of the dominated convergence theorem ( [32, Ch. 2, Ex. 20] or [33, p.139, Problem 19])

to get
pn

‖pn‖
= (p′n)

1/α → g1/α in Lα(µ).

We next claim that

‖pn‖ is bounded. (20)

Suppose not; then working on a subsequence if needed, we have ‖pn‖ := Mn → ∞. As
∫

pndµ = 1, given any ǫ > 0,

µ ({p′n > ǫ}) = µ
({

pn > ǫ1/αMn

})

≤
1

ǫ1/αMn
→ 0 as n → ∞,

and hence p′n → 0 in [µ]-measure, or g = 0 except on a set of [µ]-measure 0 (i.e., g = 0 a.e.[µ]) . But this is a contradiction

since
∫

g dµ = 1. Thus (20) holds, and we can pick a subsequence of the sequence (‖pn‖) that converges to some c. Reindex

and work on this subsequence to get pn → cg1/α in Lα(µ).
It is now that we use the hypothesis that E is closed in Lα(µ). We remind the reader that E is the set of µ-densities of

members of E. The closedness implies that the limiting function cg1/α = q for some q ∈ E , and so q must be the density of a

probability measure, say Q. Since we also have
∫

gdµ = 1, it follows that c = ‖q‖ and g = qα/‖q‖α. As pn → q in Lα(µ),
lower semicontinuity of Iα(·, r) (Proposition 3) implies

Iα(Q,R) ≤ lim inf
n→∞

Iα(Pn, R) = Iα(E, R). (21)

Since Q ∈ E, Iα(Q,R) ≥ Iα(E, R), and therefore equality must hold in (21), and Q is a forward Iα-projection of R on E.

Uniqueness: Our proof of uniqueness is analogous to the usual proof of uniqueness of projection in Hilbert spaces [30,

p. 86]. A simpler proof, after the ‘Pythagorean property’ is established, can be found at the end of Section IV.

Write d for the infimum value in the right-hand side of (14) and let Q1 and Q0 attain the infimum. Apply Proposition 6

with λ = 1/2 and with Q1 and Q0 in place of P1 and P0 to get

1
2If (Q

′
1, R

′) + 1
2If (Q

′
0, R

′)− 1
2If (Q

′
1, R

′
1,0)−

1
2If (Q

′
0, R

′
1,0) ≥ If (R

′
1,0, R

′), (22)

where

R1,0 =

1
‖q1‖Q1 +

1
‖q0‖Q0

1
‖q1‖ + 1

‖q0‖
.

Since R1,0 ∈ E we have If (R
′
1,0, R

′) ≥ d. Use this in (22), substitute If (Q
′
i, R

′) = d, i = 0, 1, and we get

d
2 + d

2 − 1
2If (Q

′
1, R

′
1,0)−

1
2If (Q

′
0, R

′
1,0) ≥ d,

and this implies

If (Q
′
1, R

′
1,0) + If (Q

′
0, R

′
1,0) ≤ 0.
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The nonnegativity of each of the terms then implies that each must be zero, and so Q1 = R1,0 = Q0. The forward Iα-projection

is unique.

This completes the proof for the case when α < 1.

(b) We now consider the case when α > 1.

Existence of forward projection: Equation (13) can be rewritten (using (5)) as

inf
P∈E

Iα(P,R) =
1

ρ
log

[

sup
p∈E

∫

p

‖p‖

(

r

‖r‖

)α−1

dµ

]

(23)

=
1

ρ
log

[

sup
h∈Ê

∫

hg dµ

]

, (24)

where

Ê :=

{

s
p

‖p‖
: p ∈ E , 0 ≤ s ≤ 1

}

,

and g = (r/‖r‖)α−1
, an element of the dual space (Lα(µ))∗. Allowing s ∈ [0, 1] makes Ê convex (as we shall soon show),

but does not change the supremum.

We now claim that

Ê is a closed and convex subset of Lα(µ). (25)

Assume the claim. Since Lα(µ) is a reflexive Banach space for α > 1, the convex and closed set Ê is also closed in the

weak topology [34, Ch. 10, Cor. 23]. Using the Banach-Alaoglu theorem and the fact that Lα(µ) is a reflexive Banach space,

we have that the unit ball is compact in the weak topology. Since Ê is a (weakly) closed subset of a (weakly) compact set, Ê
is (weakly) compact. The linear functional h 7→

∫

hg dµ is continuous in the weak topology, and hence the supremum over

the (weakly) compact set Ê is attained. Since the linear functional increases with s, the supremum is attained when s = 1, i.e.,

there exists a p ∈ E for which the supremum in (23) is attained.

We now proceed to show the claim (25). To see convexity, let p1, p0 ∈ E , let 0 ≤ s1, s0 ≤ 1, and let 0 ≤ λ ≤ 1. The convex

combination of s1p1/‖p1‖ and s0p0/‖p0‖ is

λs1
p1
‖p1‖

+ (1 − λ)s0
p0

‖p0‖
.

If both λs1 and (1 − λ)s0 are zero, then this convex combination is 0 which is trivially in Ê . Otherwise, we can write the

convex combination as

λs1
p1

‖p1‖
+ (1− λ)s0

p0
‖p0‖

= sλ
pλ
‖pλ‖

, (26)

where

pλ :=

λs1
‖p1‖p1 +

(1−λ)s0
‖p0‖ p0

λs1
‖p1‖ + (1−λ)s0

‖p0‖
, (27)

sλ :=

(

λs1
‖p1‖

+
(1 − λ)s0

‖p0‖

)

· ‖pλ‖. (28)

To show that the convex combination is in Ê , it suffices to show that pλ ∈ E and sλ ∈ [0, 1].
The convexity of E immediately implies that pλ ∈ E . It is also clear that sλ ≥ 0. From Minkowski’s inequality (for α > 1),

we have

sλ =

(

λs1
‖p1‖

+
(1 − λ)s0

‖p0‖

)

· ‖pλ‖

=

∥

∥

∥

∥

λs1
‖p1‖

p1 +
(1 − λ)s0

‖p0‖
p0

∥

∥

∥

∥

≤
λs1
‖p1‖

· ‖p1‖+
(1− λ)s0

‖p0‖
· ‖p0‖

= λs1 + (1− λ)s0

≤ 1. (29)

This establishes that Ê is convex.

To see that Ê is closed in Lα(µ), let (gn) be a sequence in Ê such that gn → g for some g ∈ Lα(µ). We need to show

g ∈ Ê .
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Fig. 2: Pythgorean property with inequality Fig. 3: Pythgorean property with equality

Write gn = snpn/‖pn‖, where pn ∈ E and 0 ≤ sn ≤ 1. Since gn → g in Lα(µ), take norms to get sn = ‖gn‖ → ‖g‖, and

so ‖g‖ ≤ 1.

If ‖g‖ = 0, then g = 0 a.e.[µ], and so g trivially belongs to Ê . We may therefore assume ‖g‖ > 0. It follows that

pn/‖pn‖ = gn/‖gn‖ → g/‖g‖ in Lα(µ).
Again, as in (20), we claim that ‖pn‖ is bounded. Suppose not. As in the proof of (20), move to a subsequence if needed

and assume ‖pn‖ := Mn → ∞. As
∫

pndµ = 1, we have

µ

({

pn
‖pn‖

> ǫ

})

= µ ({pn > ǫMn}) ≤
1

ǫMn
→ 0

as n → ∞, and pn/‖pn‖ → 0 in µ-measure, or its limit g/‖g‖ = 0 a.e.[µ]. But this contradicts the fact that
∫

(g/‖g‖)α dµ = 1.

Thus ‖pn‖ is bounded.

Focusing on a subsequence, if needed, we may assume ‖pn‖ → c for some c ≥ 0. Hence pn → cg/‖g‖ in Lα(µ). Since E
is closed, we must have cg/‖g‖ = p for some p ∈ E , whence c = ‖p‖ and g = ‖g‖ · p/‖p‖. Since we already established that

‖g‖ ≤ 1, it follows that g ∈ Ê .

Uniqueness: We now proceed to show uniqueness.

Let p0, p1 attain the supremum in (23). Set h0 = s0p0/‖p0‖ and h1 = s1p1/‖p1‖ with s0 = s1 = 1. Clearly h0 and h1

attain the supremum in (24). By convexity of Ê , 1
2h1 +

1
2h0 belongs to Ê . This and the linearity of the integral in (24) in the

h variable imply that 1
2h1 +

1
2h0 attains the supremum in (24). Noticing that 1

2h1 +
1
2h0 = s 1

2

p 1

2

/‖p 1

2

‖ as in (26), with p 1

2

and s 1

2

as in (27) and (28), respectively, we gather that s 1

2

= 1. Consequently, all the inequalities in the chain (29) must be

equalities. But then p1 and p0 are scalings of each other (which is the condition for equality in Minkowski’s inequality). Since

p0 and p1 are densities of probability measures with respect to µ, we deduce that the scaling factor must be 1, i.e., p0 = p1.

This completes the proof.

IV. PYTHAGOREAN PROPERTY

In this section, we state and prove the Pythagorean property for relative α-entropy. We define the Iα-ball with center R
and radius τ to be B(R, τ) := {P : Iα(P,R) < τ}, 0 < τ ≤ ∞. By virtue of quasi-convexity, B(R, τ) is a convex set.

Theorem 9 (The Pythagorean property): Let α > 0 and α 6= 1.

(a) Let Iα(P,R) and Iα(Q,R) be finite. The segment joining P and Q does not intersect the Iα-ball B(R, τ) with radius

τ = Iα(Q,R), i.e., Iα(Pλ, R) ≥ Iα(Q,R) for

Pλ = λP + (1− λ)Q, λ ∈ [0, 1],

(see figure 2) if and only if

Iα(P,R) ≥ Iα(P,Q) + Iα(Q,R). (30)

(b) Let

Q = λP + (1− λ)S, for some fixedλ ∈ (0, 1), (31)

and let Iα(Q,R) be finite. The segment joining P and S does not intersect B(R, τ) with τ = Iα(Q,R) (see figure 3)

if and only if the following two equalities hold:

Iα(P,R) = Iα(P,Q) + Iα(Q,R)
Iα(S,R) = Iα(S,Q) + Iα(Q,R).

}

(32)

Proof: Our proof proceeds as in [15], where the above result is proved for the finite alphabet case, with appropriate

functional analytic justifications to account for the generality of the alphabet.
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(a) We begin with the “only if” part. Assume Iα(P,R) and Iα(Q,R) are finite, and that the segment joining P and Q
does not intersect the Iα-ball B(R, τ) with radius τ = Iα(Q,R). To show (30), since

If (P
′, R′) =

∫

r′f

(

p′

r′

)

dµ

= sgn(ρ)

[
∫

(p′)1+ρ · (r′)−ρdµ− 1

]

= sgn(ρ)

[
∫

p

‖p‖
· (r′)−ρdµ− 1

]

,

which follow from (2), (3), and α(1 + ρ), it suffices to show that

sgn(ρ)

∫

p · (r′)−ρdµ ≥
sgn(ρ)

‖q‖

∫

p · (q′)−ρdµ ·

∫

q · (r′)−ρdµ. (33)

We have

If (P
′
λ, R

′) = sgn(ρ)

[
∫

pλ
‖pλ‖

· (r′)−ρdµ− 1

]

Let

s(λ) :=

∫

pλ · (r′)−ρdµ,

t(λ) := ‖pλ‖.

Clearly, Iα(Pλ, R) ≥ Iα(Q,R) for λ ∈ (0, 1) implies that

If (P
′
λ, R

′)− If (P
′
0, R

′)

λ
≥ 0 for λ ∈ (0, 1). (34)

Therefore, by taking the limit as λ → 0, the derivative of If (P
′
λ, R

′) with respect to λ evaluated at λ = 0, should be ≥ 0.

Observe that

s(λ)− s(0)

λ
=

1

λ

[
∫

pλ · (r′)−ρdµ−

∫

q · (r′)−ρdµ

]

=

∫
(

pλ − q

λ

)

· (r′)−ρdµ

=

∫

(p− q) · (r′)−ρdµ

=

[
∫

p · (r′)−ρdµ−

∫

q · (r′)−ρdµ

]

.

So ṡ(0) := limλ↓0(s(λ) − s(0))/λ exists and equals the above expression.

Let us now identify ṫ(0). For α > 1 (i.e., ρ > 0), we have
∣

∣

∣

∣

∂

∂λ
(pλ)

α

∣

∣

∣

∣

= α(pλ)
α−1|p− q| ≤ α(p+ q)α,

while for α < 1, notice that for any 0 < l < 1
2 , we have

∣

∣

∣

∣

∂

∂λ
(pλ)

α

∣

∣

∣

∣

= α(pλ)
α−1|p− q| =

α|p− q|

[λp+ (1− λ)q]1−α
≤

α(p+ q)

min{λ, (1− λ)}1−α(p+ q)1−α

≤
α(p+ q)α

l1−α
∀λ ∈ (l, 1− l),

and both upper bounds are in L1(µ). Therefore by chain rule and [32, Th. 2.27], we get

ṫ(λ) =

[
∫

(pλ)
αdµ

]
1

α
−1

·

∫

(pλ)
α−1(p− q)dµ
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for λ ∈ (l, 1− l). As λ ↓ 0 (by moving l closer to 0), we get

ṫ(0) =

(
∫

qαdµ

)
1

α
−1

·

∫

qα−1(p− q)dµ

=

(
∫

qαdµ

)
1−α

α

·

(
∫

pqα−1dµ−

∫

qαdµ

)

=

∫

p

(

qα
∫

qαdµ

)
α−1

α

dµ−

(
∫

qαdµ

)
1

α

=

∫

p · (q′)−ρdµ− ‖q‖.

Since
1

λ

[

s(λ)

t(λ)
−

s(0)

t(0)

]

=
1

t(λ)t(0)

[

t(0)
s(λ)− s(0)

λ
− s(0)

t(λ)− t(0)

λ

]

,

it follows that the derivative of s(λ)/t(λ) exists at λ = 0 and is given by (t(0)ṡ(0) − s(0)ṫ(0))/t2(0). Equation (34) and

t(0) > 0 imply that

ṡ(0)− s(0) ·
ṫ(0)

t(0)
≥ 0. (35)

Consequently, ṫ(0) is necessarily finite. Substituting the values of s(0), ṡ(0), t(0) and ṫ(0) in (35) we get the required inequality

(33).

To prove the converse “if” part, let us assume that

Iα(P,R) ≥ Iα(P,Q) + Iα(Q,R),

which is the same as (33). Since Iα(P,R) and Iα(Q,R) are finite, it follows that Iα(P,Q) is also finite. From the trivial

statement

Iα(Q,R) = Iα(Q,Q) + Iα(Q,R), (36)

we get the following analog of (33) but with equality (replace p in (33) with q):

sgn(ρ)

∫

q · (r′)−ρdµ =
sgn(ρ)

‖q‖

∫

q · (q′)−ρdµ ·

∫

q · (r′)−ρdµ. (37)

The λ and (1− λ) weighted linear combination of (33) and (37), respectively, yields,

sgn(ρ)

∫

pλ · (r′)−ρdµ ≥
sgn(ρ)

‖q‖

∫

pλ · (q′)−ρdµ ·

∫

q · (r′)−ρdµ,

i.e.,

Iα(Pλ, R) ≥ Iα(Pλ, Q) + Iα(Q,R)

≥ Iα(Q,R).

This completes the proof of (a).

(b) The “if” part is a trivial consequence of (a). We proceed to prove the “only if” part.

The finiteness of Iα(Q,R) implies that Iα(P,R) and Iα(S,R) are also finite. Indeed, from (31), it is clear that p ≤ λ−1q
and thus p/r ≤ λ−1q/r. As a consequence, we have

(

p′

r′

)
1

α

=
p

r
·
‖r‖

‖p‖

≤ λ−1 q

r
·
‖r‖

‖p‖

= λ−1

(

q′

r′

)
1

α

·
‖q‖

‖p‖
.

Integrating with respect to R′, we get

∫
(

p′

r′

)
1

α

dR′ ≤ λ−1 ‖q‖

‖p‖
·

∫
(

q′

r′

)
1

α

dR′ < ∞.
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Fig. 4: Subspace-transitivity

From (4), we have

Iα(P,Q) =
1

ρ
· log

[

sgn(ρ)

∫
(

p′

q′

)
1

α

dQ′ − 1

]

.

Hence Iα(P,R) ≤ Iα(Q,R) + c for some constant c, and therefore Iα(P,R) is finite. Similarly Iα(S,R) is also finite.

Applying the first part of the theorem, we get

Iα(P,R) ≥ Iα(P,Q) + Iα(Q,R)

Iα(S,R) ≥ Iα(S,Q) + Iα(Q,R).

The first inequality is the same as (33) while the second inequality is the same as (33) with s, the density of S, in place of p.

Suppose one of these were a strict inequality. Then the λ and (1 − λ) weighted linear combination of these two inequalities,

along with Q = λP + (1 − λ)S, yields (37) with a strict inequality, which is the same as (36) with a strict inequality, a

contradiction. So the two inequalities must be equalities. This proves the “only if” part and completes the proof of (b).

Once Theorem 9 is established for general measure spaces, the proofs of the following results are exactly as in [15]. We

provide them for the benefit of the reader and for ease of reference. Let us first recall that any Q ∈ E is said to be an algebraic

inner point of E if for every P ∈ E there exists S ∈ E and 0 < t < 1 such that Q = tP + (1− t)S.

Theorem 10: The following statements hold.

(a) (Projection and the Pythagorean property): A probability measure Q ∈ E∩B(R,∞) is a forward Iα-projection of R on

the convex set E of probability measures if and only if every P ∈ E∩B(R,∞) satisfies (30). If the forward Iα-projection

is an algebraic inner point of E then E ⊂ B(R,∞) and (32) holds for every P ∈ E.

(b) (Subspace-transitivity): Let E and E1 ⊂ E be convex sets of probability measures. Let R have the forward Iα-projection

Q on E and the forward Iα-projection Q1 on E1, and suppose that (32) holds for every P ∈ E. Then Q1 is the forward

Iα-projection of Q on E1. (See figure 4).

Remark 10: Th. 10 (a) essentially says that the forward projection is the unique point in E that has the Pythagorean property.

The importance of Th. 10 (b) will be made clear in section VI.

Proof: (a) Consider the first part of the statement. The “if” part is trivial from the nonnegativity of Iα. The “only if”

part easily follows from Theorem 9-(a). Indeed, Q ∈ E ∩B(R,∞) is the forward Iα-projection of R implies that for every

P ∈ E, we have Iα(Pλ, R) ≥ Iα(Q,R) where Pλ = λP + (1− λ)Q. Hence by Theorem 9-(a), (30) holds.

If the forward Iα-projection Q is an algebraic inner point of E then for every P ∈ E, there exists S ∈ E and λ ∈ (0, 1)
such that Q = λP + (1− λ)S. Hence by Theorem 9-(b), (32) holds.

(b) Applying Theorem 10-(a) to E1, we have for every P ∈ E1

Iα(P,R) ≥ Iα(P,Q1) + Iα(Q1, R)

= Iα(P,Q1) + (Iα(Q1, Q) + Iα(Q,R)),

where the second equality follows from the equality hypothesis that (32) holds. Using this same equality hypothesis, we also

have

Iα(P,R) = Iα(P,Q) + Iα(Q,R).

Thus

Iα(P,Q) ≥ Iα(P,Q1) + Iα(Q1, Q)

for every P ∈ E1. Applying Theorem 10-(a) once again, we conclude that Q1 is the forward Iα-projection of Q on E1.

Theorem 10-(a) yields a simple proof of the uniqueness of projection on a convex E, if the projection exists. Indeed, let

Q1 and Q2 be two projections of a probability measure R on a convex E. Then Iα(Q1, R) = Iα(Q2, R) < ∞. By Theorem

10-(a),

Iα(Q2, R) ≥ Iα(Q2, Q1) + Iα(Q1, R).
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Canceling Iα(Q2, R) and Iα(Q1, R), we get Iα(Q2, Q1) = 0 which further implies Q1 = Q2.

V. EXAMPLE: FORWARD Iα-PROJECTION FOR A LINEAR FAMILY

In this section we provide an explicit characterization of the forward Iα-projection on a linear family.

Let Γ be an arbitrary index set and let fγ : X → R, for γ ∈ Γ, be measurable functions. The family of probability measures

defined by

L =

{

P :

∫

fγ dP = 0, γ ∈ Γ

}

, (38)

if nonempty, is called a linear family6.

Our next result is that the forward Iα-projection on a linear family is a member of an associated α-power-law family7 just

as forward I -projection on a linear family is a member of an associated exponential family [7, Th. 3.1]. The proof for α < 1
is similar with only minor changes. The proof for α > 1 involves some additional conditions. We will explore the geometric

relationship between the linear family and the α-power-law family in a companion paper [27].

Theorem 11: Let α > 0 and α 6= 1. Let L be a linear family of probability measures as in (38). Let R have µ-density r.

(a) If Q is the forward Iα-projection of R on L then the µ-density q of Q satisfies

q(x)α−1 = c · r(x)α−1 + g(x), ∀x /∈ N (39)

q(x) = 0, ∀x ∈ N, (40)

where N ⊆ X is such that, for every P ∈ L ∩B(R,∞),






P (N) = 0, if α < 1

c

∫

N

rα−1 dP ≤

∫

X\N
g dP, if α > 1, (41)

c =

∫

qα dµ
∫

qrα−1 dµ
, (42)

and g belongs to the L1(Q)-closure of the linear space spanned by {fγ}γ∈Γ.

(b) Conversely, if there is a Q ∈ L whose µ-density satisfies (39)-(41) for some scalar c and some g in the linear span of

{fγ}γ∈Γ, then Q is the forward Iα-projection of R on L, (30) holds for every P ∈ L ∩ B(R,∞), and further, (30) holds

with equality when α < 1.

Proof: (a) Let Q be the forward Iα-projection of R on L with µ-density q. Let N = {x ∈ X : q(x) = 0}. By definition

of the forward Iα-projection, we have Iα(Q,R) < ∞. When α < 1, if P ∈ L ∩ B(R,∞), then Theorem 10-(a) implies

(30), which further implies Iα(P,Q) < ∞, P ≪ Q, and thus P (N) = 0. We will soon define g on X \N and will show the

inequality in (41) for α > 1 later in this proof.

From Iα(Q,R) < ∞, using (6), it is also easy to verify that 0 <
∫

q rα−1 dµ < ∞. Define

L1 := {P ∈ L : p(x) ≤ 2q(x) a.e.[µ]}.

Obviously, L1 is convex and Q ∈ L1. For any P ∈ L1, define P1 to have the density p1(x) = 2q(x) − p(x). We then have

P1 ∈ L1 and Q = P+P1

2 . Hence Q is an algebraic inner point of L1. By Theorem 10-(a), (30) holds with equality for all

P ∈ L1. This equality can be simplified, based on (5), to
∫

prα−1dµ =

∫

pqα−1dµ ·

∫

qrα−1dµ
∫

qαdµ
(43)

= c−1

∫

pqα−1dµ, (44)

where c is given by (42). This can be rewritten as
∫

p ·
(

qα−1 − crα−1
)

dµ = 0 ∀P ∈ L1, (45)

which with g(x) := q(x)α−1 − cr(x)α−1, x ∈ X \N, is the same as
∫

pg dµ = 0 ∀P ∈ L1. (46)

6Let us reiterate the standing assumptions: P ≪ µ and the µ-density p ∈ Lα(µ) for every P ∈ L.
7A parametric family of probability distributions that are of the form (39).
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We have left g undefined for x with q(x) = 0, but this is inconsequential because we now show g belongs to the L1(Q)-
closure of the linear span of {fγ}γ∈Γ.

From (46), we get
∫

g ·
dP

dQ
· dQ = 0 ∀P ∈ L1, (47)

and by setting P = Q in (47) we get
∫

g dQ = 0. (48)

Combining (47) and (48) yields
∫

g

(

dP

dQ
− 1

)

dQ = 0 ∀P ∈ L1. (49)

If h : X → R is a measurable function such that |h| ≤ 1, a.e.[Q], and further
∫

h dQ = 0, and

∫

fγh dQ = 0 for every γ ∈ Γ, (50)

then P defined according to dP = (h+ 1) dQ belongs to L1, and from (49), it follows that
∫

gh dQ = 0. (51)

It immediately follows after scaling that if h ∈ L∞(Q), the dual of L1(Q), and (50) holds, then (51) must also hold. In other

words, any continuous linear functional Fh : L
1(Q) → R given by Fh(f) =

∫

fh dQ that vanishes on the linear subspace

spanned by 1 and the fγ’s also vanishes at f = g. By the Hahn-Banach theorem [32, Th. 5.8.a], g is in the L1(Q)-closure of

that linear subspace. From (48), it follows that g is in the L1(Q)-closure of the subspace spanned by the fγ’s alone.

We now show the inequality in (41) for α > 1. For any P ∈ L ∩ B(R,∞), where such a P may be outside L1, let us

observe that

0 ≤

∫

X

pqα−1dµ− c

∫

X

prα−1dµ (52)

=

∫

X\N
pqα−1dµ− c

∫

X

prα−1dµ (53)

=

∫

X\N
p · (crα−1 + g) dµ − c

∫

X

prα−1dµ (54)

=

∫

X\N
pg dµ − c

∫

N

prα−1dµ, (55)

where (52) follows from the combination of (6), (30), and (42); consequently, (53) follows from the fact that q(x) = 0 for

x ∈ N , (54) follows from the definition of g(x) on the set x ∈ X \N , and (55) follows from the cancellation of a portion of

the last integral term on the right-hand side of (54). Inequality (41) for α > 1 follows from (55). This completes the proof of

(a).

(b) Let Q ∈ L have µ-density q which satisfies (39)-(41) where c is some scalar and g is a linear combination of the fγ’s;

so
∫

g dP = 0 for all P ∈ L. Integrating (39)-(40) with respect to Q and using
∫

g dQ = 0, we get
∫

qα dµ = c

∫

qrα−1 dµ

from which the following are clear:

• 0 <
∫

qrα−1 dµ < ∞, and so Iα(Q,R) < ∞;

• c > 0 and satisfies (42).

Fix any P ∈ L with Iα(P,R) < ∞. As claimed at the beginning of the proof of part (a), we then have 0 <
∫

prα−1 dµ < ∞.

Integrating (39)-(40) with respect to P , we now get
∫

pqα−1 dµ ≥ c

∫

prα−1 dµ,

where

• equality holds when α < 1 because of the assumption P (N) = 0,

• inequality holds when α > 1 because of the inequality assumption in (41); indeed, this assumption is the same as saying

that the right-hand side of (55) is ≥ 0, and one proceeds in the reverse direction in that sequence of equalities to obtain

the inequality (52) which is the same as the above inequality.
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Since c satisfies (42), we have that (30) holds (with equality when α < 1). By Theorem 10-(a) (in the “if” direction) Q is the

forward Iα-projection of R on L.

Remark 11: As in the case of relative entropy (α = 1), in Theorem 11-(a), it is possible that the inequality in (30) is strict for

some P in the linear family, and in Csiszár’s words [7, p.152], “neither the necessary nor the sufficient condition of Theorem

11 is both necessary and sufficient, in general.” Csiszár’s counterexamples in [7, pp.152-153], but with qα−1 = c · rα−1 + g
instead of q = c · r · exp{g}, continue to serve as counterexamples for our parametric setting (see Appendix E).

However, under an additional assumption, Theorem 11 can be leveraged to provide a necessary and sufficient condition for

a Q ∈ L to be the forward Iα-projection.

Corollary 12: Let α > 0 and α 6= 1. Let L be the linear family as defined in (38). Suppose that the linear space spanned

by {fγ}γ∈Γ is L1(P )-closed for every P ∈ L. Consider a Q ∈ L. Q is the forward Iα-projection of R on L if and only if

the µ-density q of Q satisfies (39)-(41) for some scalar c and some g in the span of {fγ}γ∈Γ. Moreover, the inequality in (41)

for α > 1 is equivalent to
∫

N

(crα−1 + g) dP ≤ 0, α > 1. (56)

Proof: The forward direction is immediate from the forward direction of Theorem 11 and the hypothesis that the linear

space spanned by {fγ}γ∈Γ is L1(Q)-closed; so g is in the span of {fγ}γ∈Γ. The reverse direction is the same as the reverse

direction in Theorem 11.

To prove (56), let us observe that because g is in the span of {fγ}γ∈Γ, it is well-defined for all x ∈ X and consequently

satisfies
∫

g dP = 0 for every P ∈ L. Adding
∫

N
g dP to both sides of (41) and using

∫

g dP = 0, we get (56).

One example where the linear space spanned by {fγ}γ∈Γ is L1(P )-closed for every P ∈ L is when Γ is finite, i.e.,

Γ = {1, 2, . . . , k} for some finite k. If Q is the forward Iα-projection of R on L, then the expression

q(x)α−1 = c · r(x)α−1 +

k
∑

γ=1

θγfγ(x),

where (θ1, . . . , θk) ∈ Rk, holds for all x with q(x) > 0. Moreover, (30) holds for all P ∈ L ∩ B(R,∞), and it holds with

equality when α < 1.

For relative entropy, α = 1, Csiszár provides another example: the family of probability measures on a product space

X = X1 × X2 with the associated product σ-algebra, having specified marginals. We leave the question of whether Corollary

12 is applicable or not to this setting as an open question.

Even though Corollary 12 characterizes the forward Iα-projection to some extent, existence of the projection is not assured,

and one appeals to Theorem 8 or other means to guarantee existence. Let us note in passing two instances when the crucial

hypothesis of Theorem 8, that the set of µ-densities is Lα(µ)-closed, holds.

(a) If α > 1, µ(X) < +∞, and fγ ∈ L∞(µ) for γ = 1, . . . , k, then a simple application of Lyapunov’s inequality8 and

the dominated convergence theorem suffices to show that L, the set of µ-densities of probability measures in L, is

Lα(µ)-closed.

(b) If X is finite, point-wise convergence suffices to establish that L is Lα(µ)-closed.

Let us now exploit the understanding we have gained to generalize Lemma 2-e) on Rényi entropy maximizers.

Corollary 13: Let α > 0 and α 6= 1. Let L be the linear family as defined in (38). If L has a member Q whose µ-density

q satisfies (39)-(41) for some scalar c, some g in the span of {fγ}γ∈Γ, and with r(x) ≡ 1, then

Iα(P,Q) ≤ Hα(Q)−Hα(P ) ∀P ∈ L, (57)

with equality when α < 1. Furthermore, Q is the Rényi entropy maximizer in L.

Proof: It suffices to prove (57). The second statement immediately follows.

Using (6), (1), and after a simple rearrangement, we get

Iα(P,Q) =
α

1− α

[

log

∫

pqα−1dµ− log

∫

qαdµ

]

+Hα(Q)−Hα(P ).

8Lyapunov’s moment inequality states that if µ(X) < ∞, 0 < r < s ≤ ∞, and u ∈ Ls(µ), then ‖u‖r ≤ ‖u‖sµ(X)
(1/r)−(1/s), and consequently

Ls(µ) ⊆ Lr(µ).
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Let us note from (39)-(40) that
∫

qαdµ = c. So (57) will hold if we can establish
∫

pqα−1dµ = c ∀P ∈ L, if α < 1,
∫

pqα−1dµ ≥ c ∀P ∈ L, if α > 1.

Both of these are obvious from the hypotheses of the corollary via (39)-(41), the assumption that r(x) ≡ 1, and the fact that

P and Q are both probability measures belonging to L.

Remark 12: When 0 < µ(X) < ∞, with r(x) ≡ 1, define the probability measure R̃ with µ-density

r̃(x) :=
r(x)

µ(X)
≡

1

µ(X)
.

We then have from (6) that Iα(P, R̃) = Hα(R̃)−Hα(P ) = logµ(X)−Hα(P ), and so the Rényi entropy maximizer on L is

the forward Iα-projection of R̃ on L. From (5), it is clear that scale factors are irrelevant, and if we allow the second argument

of Iα to be positive measures, not just probability measures, then the Rényi entropy maximizer on L can be interpreted as the

“forward Iα-projection of µ on L”. When µ(X) is not finite, there is no probability measure on X with the uniform µ-density.

Nevertheless, Corollary 13 shows that the Rényi entropy maximizer is the “forward Iα-projection of µ on L”.

Remark 13: Student-t and Student-r distributions are maximizers of Rényi entropy under a covariance constraint [20]. Since

a Student-r distribution has a compact support, it can be shown to be the forward Iα-projection of the uniform distribution

as described above, when α > 1. The support of a Student-t distribution is the whole of Rd. However, it can also be seen as

a limit of forward Iα-projections of uniform distributions on an increasing sequence of compact subsets of Rd, when α < 1.

VI. TRANSITIVITY AND ITERATED PROJECTIONS FOR A LINEAR FAMILY

In this section we assume X is finite. Let P(X) be the space of all probability measures on X. In a remarkable paper [24]

on an axiomatic approach to inference, Csiszár explored some natural axioms for selection and projection rules, and their

consequences on linear families.

A projection rule is a mapping that (in our context) takes a probability measure R and a linear family L and maps them to

a probability measure Π(L|R) in L, such that if R ∈ L then Π(L|R) = R. Π(L|R) is then called the projection of R on L.

A projection rule is said to be generated by a function F (P |R), P ∈ P(X), R ∈ P(X), if for each R, Π(L|R) is the unique

element of L where F (P |R) is minimized subject to P ∈ L. A projection rule may be interpreted as follows: a “prior guess”

R is updated to Π(L|R) upon information that the “feasible set” is L.

Clearly, the forward Iα-projection of R on a linear family L is an example of a projection rule that is generated by the

function F (P |R) = Iα(P,R). Csiszár [24, Th. 1] showed that any regular and local projection rule, see [24, Def. 2-3]

for the definitions, is generated by a separable function F (P |R) =
∑

x∈X
φx(P (x)|R(x)), for some component functions

φx(·|·), x ∈ X, with the value 0 at P = R.

Another desired property of a projection rule is subspace-transitivity ( [24, Def. 6]). A projection rule is subspace-transitive

if for any L′ ⊂ L, both of which are linear families, and any probability measure R, we have

Π(L′|R) = Π(L′|Π(L|R)).

This can be interpreted as follows: if a “prior guess” R is updated to Π(L|R) upon information that the “feasible set” is L,

and further information restricts the possibilities to a smaller feasible set L′, then updating the “current guess” Π(L|R) on

the basis of all available information yields the same outcome as updating the “prior guess” R directly on the basis of all

available information. Csiszár showed [24, Th. 3] that any regular, local, and subspace-transitive projection rule is generated

by Bregman’s divergence of the sum-form, i.e.,

F (P |R) = Φ(P )− Φ(R)− 〈grad Φ(R), P −R〉,

where Φ(P ) =
∑

x ϕx(P (x)). Squared Euclidean distance and relative entropy I1 are examples of such divergences.

Iα is, in general, neither of the sum-form nor a Bregman’s divergence. Yet when α < 1, the projection rule generated

by Iα(P,R) is subspace-transitive. The property fails in general when α > 1, but holds even in this case in the special

circumstance when the projection is an algebraic inner point. The main goal of this section is to establish subspace transitivity.

This suggests that if one is willing to forgo the locality axiom of a projection rule, then there is at least one other family of

projection rules, those generated by Iα, that are regular and subspace-transitive.

To formalize the result, we begin with two simple propositions. For a probability measure P write Supp(P ) for the set of

x where P (x) > 0. For a family of probability measures E, write Supp(E) for the union of the supports of all probability

measures in E. We then have the following.
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Proposition 14: Let α < 1. Let Q be the forward Iα-projection of R on E. If E is convex, then Supp(Q) = Supp(E) ∩
Supp(R).

Proof: We may restrict attention to those P ∈ E such that P ≪ R. For such a P , let Pt = (1 − t)Q + tP , 0 ≤ t ≤ 1 .

Since E is convex, P ∈ E implies that Pt ∈ E. By the mean value theorem, for each t ∈ (0, 1), there exists t̃ ∈ (0, t) such that

0 ≤
1

t

[

Iα(Pt, R)− Iα(Q,R)
]

=
d

ds
Iα(Ps, R)|s=t̃. (58)

The first inequality follows from the fact that Q is the projection. Using (8), we see that

d

ds
Iα(Ps, R) =

α

1− α

[∑

x(P (x) −Q(x))R(x)α−1

∑

x Ps(x)R(x)α−1
−

∑

x(P (x)−Q(x))Ps(x)
α−1

∑

x Ps(x)α

]

. (59)

Suppose Q(x) = 0 for an x ∈ Supp(P ). Then α < 1 implies that right-hand side of (59) goes to −∞ as t ↓ 0, which contradicts

the nonnegativity requirement in (58). Hence Supp(P ) ⊂ Supp(Q) for every P ∈ L. Also, since Q is the Iα-projection of R,

Iα(Q,R) < ∞, and as a consequence, Supp(Q) ⊂ Supp(R). This establishes the proposition.

Consider now the linear family of probability measures on X given by

L =
{

P :
∑

x

P (x)fγ(x) = 0, for all γ = 1, . . . , k
}

. (60)

Since X is finite, we already saw at the end of the previous section that L is closed in Lα(µ), with µ being the counting

measure. By Theorem 8, any probability measure R with Iα(P,R) < ∞ for some P ∈ L has a forward Iα-projection on L.

Moreover, we have the following.

Proposition 15: Let α < 1. Let R have full support. Let L be as in (60) and let Q be the forward Iα-projection of R on

L. Then Q is an algebraic inner point of L.

Proof: By Proposition 14, Supp(Q) = Supp(L). Hence for every P ∈ L, one can find t < 0 such that Pt = (1−t)Q+tP ∈
L. This implies that

Q =
1

1− t
Pt −

t

1− t
P,

and hence Q is an algebraic inner point of L.

We are now ready to state the main result of this section.

Theorem 16 (Subspace-transitivity): Let L1 ⊂ L be two linear families of probability measures. Let R be a probability

measure with full support. Let R have the forward Iα-projection Q on L and the forward Iα-projection Q1 on L1. If either

(a) α < 1 or (b) α > 1 and Q is an algebraic inner point of L, then Q1 is the forward Iα-projection of Q on L1.

Proof: If α < 1, then by Proposition 15, Q is an algebraic inner point of L. If α > 1, by assumption (b), Q is an algebraic

inner point of L. Apply Theorem 10-(a) to get that (32) holds for all P ∈ L. Now apply Theorem 10-(b) to conclude that

subspace-transitivity holds.

Remark 14: As can be observed from Theorem 10-(b), and from the proof above, subspace-transitivity follows whenever

there is equality in (32). What is special about linear spaces under α < 1 is that this equality comes for free, thanks to

Proposition 15.

Example 1: The following example shows that subspace-transitivity for the Iα-projection rule need not hold when α > 1.

Take α = 2 and X = {1, 2, 3, 4}. Take R = (1/4, 1/4, 1/4, 1/4). Consider the two linear families on the probability simplex in

R4,

L = {P ∈ P(X) : 8p1 + 4p2 + 2p3 + p4 = 7},

L1 = {P ∈ P(X) : 8p1 + 4p2 + 2p3 + p4 = 7; p2 = 1/8}.

Thus

L =
{

P ∈ P(X) :
∑

x

P (x)f1(x) = 0
}

,

L1 =
{

P ∈ P(X) :
∑

x

P (x)fi(x) = 0, i = 1, 2
}

,

where f1(·) = (1,−3,−5,−6) and f2(·) = (−1/8, 7/8,−1/8,−1/8).
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We claim that the forward Iα-projection of R on L is Q = (3/4, 1/4, 0, 0). To check this claim, first note that Q ∈ L. Also,

with c = 5/2 and θ1 = 1/8, we can check that

0 < Q(x) = cR(x) + θ1f1(x), x = 1, 2,

0 = Q(3) = cR(3) + θ1f1(3),

0 = Q(4) > cR(4) + θ1f1(4).

One can then easily verify that this Q satisfies (56) (which is equivalent to (41) with α > 1) for every P ∈ L. Hence, by

Corollary 12, Q is the forward Iα-projection of R on L.

Similarly one can show that the forward Iα-projection of R on L1 is Q1 = (19/24, 1/8, 1/12, 0). Indeed, with θ1 = 17/144,
θ2 = −7/36 and c = 187/72, we have

0 < Q1(x) = cR(x) + θ1f1(x) + θ2f2(x), x = 1, 2, 3,

0 = Q1(4) > cR(4) + θ1f1(4) + θ2f2(4).

Again, Q1 satisfies (56) for every P ∈ L1 and, by Corollary 12, must be the forward Iα-projection of R on L1.

Numerical calculations show that (0.798, 0.125, 0.038, 0.039) is in L1 and

Iα((0.798, 0.125, 0.038, 0.039), Q) = 0.0323 < Iα(Q1, Q) = 0.0382.

If Q̃1 is the forward Iα-projection of Q on L1, it must satisfy Iα(Q̃1, Q) ≤ 0.0323, which Q1 does not. Thus, the transitive

projection of R on L1 via Q is different from Q1.

The next theorem provides an iterative way of finding the forward Iα-projection for α < 1 when the set L is an intersection

of several linear families. A similar result is known for relative entropy (α = 1); see [7, Th. 3.2].

Theorem 17 (Iterated projections): Let α < 1. Suppose that L0, . . . ,Lm−1 are linear families of probability measures on

a finite set X and that L =
⋂m−1

i=0 Li 6= ∅. Let R be a probability measure on X with full support. Let Q be the forward

Iα-projection of R on L. Write Q0 = R and write Qn for the forward Iα-projection of Qn−1 on Ln−1, where for n > m,

Ln = Li, i = n (mod m). Then Qn → Q.

Proof: The proof largely follows Csiszár’s proof of [7, Th. 3.2] with the main changes being the use of the generalization

of Pinsker’s inequality [31, Th. 1] and some care to address convergence of the escort measures. Details follow.

First let us observe that if Supp(Ln) * Supp(Qn−1), in order to find the projection of Qn−1 on Ln, one may restrict attention

to members P ∈ Ln with Supp(P ) ⊂ Supp(Qn−1). If not, Iα(P,Qn−1) = ∞. With this restricted Ln, by Proposition 15,

Qn is an algebraic inner point of the restricted Ln. Henceforth we call these simply Ln and denote their intersection by L.

Fix a natural number N . In view of Proposition 15, applying Theorem 10-(a), we see that for any P ∈ L we have

Iα(P,Qn−1) = Iα(P,Qn) + Iα(Qn, Qn−1), n = 1, . . . , N. (61)

Summing all the N equations, we get

Iα(P,R) = Iα(P,QN ) +

N
∑

n=1

Iα(Qn, Qn−1) ∀P ∈ L.

Now let (QNk
) be a subsequence of (Qn) converging to, say, Q̃. Taking limit as k → ∞ along this subsequence, we get

Iα(P,R) = Iα(P, Q̃) +

∞
∑

n=1

Iα(Qn, Qn−1) ∀P ∈ L, (62)

which implies that the summation term is finite, and so Iα(Qn, Qn−1) → 0, or If (Q
′
n, Q

′
n−1) → 0, as n → ∞ in view of

(4). Hence, by [31, Th. 1], |Q′
n − Q′

n−1|TV → 0 as n → ∞. Hence all of the sequences (Q′
Nk

), (Q′
Nk+1),. . . ,(Q′

Nk+m−1)

converge to same Q̃′. Now, for any k, Q′
Nk

, Q′
Nk+1, . . . , Q

′
Nk+m−1, are m consecutive members of the sequence (Q′

n), and

by the periodic construction of the Qn’s, each is in one of L′
0, . . . ,L

′
m−1, where L′

i = {P ′ : P ∈ Li} with P ′ as in (2). Hence

Q̃′ is in each of them which implies Q̃′ ∈ L′ and Q̃ ∈ L. Putting P = Q̃ in (62), we get

Iα(Q̃, R) =

∞
∑

n=1

Iα(Qn, Qn−1)

for this subsequential limit Q̃. Substituting this back in (62), we see that

Iα(P,R) = Iα(P, Q̃) + Iα(Q̃, R) ∀P ∈ L.

By Theorem 10, Q̃ is the forward Iα-projection Q of R on L. By uniqueness of the forward Iα-projection, every subsequential

limit equals Q, and so (Qn) converges to Q.
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Remark 15: Again, the above theorem continues to hold for α > 1 under the rather restrictive assumption that each of the

forward Iα-projections satisfies the Pythagorean property (61) with equality.

VII. CONCLUDING REMARKS

We end this paper with some concluding remarks.

1) The forward Iα-projection, in general, depends on the reference measure µ. The dependence on µ however disappears

as α → 1, and in this sense I1-projection or I -projection is special.

2) Throughout this paper, motivated by constraints induced by linear statistics, we restricted E to be a convex set of

probability measures. But it is clear that if p and q are two µ-densities of probability measures, and both belong to

Lα(µ), then, for positive constants c1 and c2, we have Iα(c1p, c2q) = Iα(p, q) because Iα depends only on the

associated escort probability densities of the arguments, and scale factors do not affect these escort densities. It would

therefore be interesting to extend our theory of the forward Iα-projection to general convex and closed subspaces of

Lα(µ).
3) The above remark on the insignificance of the scaling factors suggests that perhaps the theory ought to be developed

from the view point of escort distributions. However, convexity of E which is a natural consequence of linear statistics,

may be lost in the escort domain.

4) Is there a “generalized” forward Iα-projection Q for a convex E that is not Lα(µ)-closed? Further, if (Pn) is a sequence

in E such that Iα(Pn, R) → infP∈E Iα(P,R) as n → ∞, does Pn converge to this Q? A careful examination of the

proof of Theorem 8 for the case when α < 1 shows that while one can extract a unique probability measure Q that

satisfies

Iα(Q,R) ≤ lim
k→∞

Iα(Pnk
, R) = inf

P∈E

Iα(P,R)

for any converging subsequence of densities (pnk
) in Lα(µ), it is not clear if pn → q, the µ-density of Q, in Lα(µ).

However, each subsequential limit is always a scaled version of q. Thus Q can serve as the generalized forward Iα-

projection. This too suggests the benefit of a theory modulo scale factors.

5) In Section V, we considered projection on linear families. Let us highlight an open question raised in that section. Is

Corollary 12 applicable to a family of distributions on a product space with specified marginals? While the answer is

true for α = 1 ( [7, Cor. 3.2]), we have not been able to address the general case of α > 0, α 6= 1.

6) Suppose that we have a nested sequence L1 ⊃ L2 ⊃ . . . of convex sets of probability measures absolutely continuous

with respect to a common σ-finite measure µ such that the respective set of densities Ln is closed in Lα(µ). Let

L =
∞
⋂

n=1

Ln

and assume that L is nonempty. Questions of interest are whether the forward Iα-projections of a probability measure

R on the sets Ln converge to the forward Iα-projection on the limiting set L and whether the optimal values on these

sets converge to that on the limiting set. Questions of this kind have been studied for entropy by Borwein and Lewis

[35] and for φ-entropies by Teboulle and Vajda [36].

7) Can one characterize the set of all regular and subspace-transitive projection rules? We therefore wish to relax the locality

axiom for projection rules. This ought to include all projection rules generated by Bregman’s divergences of the sum-form

and additionally the projection rule generated by Iα.

APPENDIX

A. Proof of Lemma 2:

These properties are well-known. We provide the proofs of a) - d) for completeness. For e) we provide a reference.

a) By Jensen’s inequality,

If (P
′, Q′) ≥ 0,

with equality if and only if P ′ = Q′, which holds if and only if P = Q. Substituting this in (4), we get Iα(P,Q) ≥
1/ρ · log(1) = 0 for both positive and negative ρ, with equality if and only if P = Q.

b) Using (6), we get

Iα(P,Q) = −α log

(
∫

qα−1dP

)
1

α−1

+ log

(
∫

pα−1dP

)
1

α−1

+ (α− 1) log

(
∫

qα−1dQ

)
1

α−1

. (63)

By assumption, Iαu
(P,Q) < ∞, where αu > 1. From the fact that p and q are in Lαu(µ), we have that

∫

pα−1dP =
∫

pαdµ
is finite and nonzero for all α ∈ (1, αu], and the same holds for

∫

qα−1dQ. Using these facts in (63), we conclude that
∫

qαu−1dP is finite and nonzero, and consequently so is
∫

qα−1dP for all α ∈ (1, αu]. We shall now apply a result [32,
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Ch. 6, Ex. 8] which states that if g ∈ Lβu(ν) for some βu > 0 and a probability measure ν, then g ∈ Lβ(ν) for 0 < β < βu,

and

lim
β↓0

(
∫

|g|β dν

)1/β

= exp

{
∫

(log |g|) dν

}

.

By setting β = α− 1, and by letting α ↓ 1, we apply the above result on each of the terms on the right-hand side of (63) and

conclude that
∫

(log q) dP ,
∫

(log p) dP , and
∫

(log q) dQ exist, and the right-hand side of (63) goes to

−

∫

(log q) dP +

∫

(log p) dP + 0 = I (P‖Q).

A similar argument shows that when Iαl
(P,Q) < ∞ for some αl < 1, we have limα↑1 Iα(P,Q) = I (P‖Q).

c) and d) follow directly from the definitions.

e) This was proved by Lutwak et al. [21, Th. 2] for the scalar case and by Costa et al. [22] for the vector case.

B. Proof of Proposition 3:

We shall first prove the lower semicontinuity for α < 1: if pn → p in Lα(µ) then

lim inf
n→∞

Iα(pn, q) ≥ Iα(p, q). (64)

Fix an α < 1; this fixes a ρ > 0. From (4), we may write

Iα(p, q) =
1

ρ
log[If (p

′, q′) + 1],

where f(u) = u1+ρ − 1 for u ≥ 0.

Let pn → p in Lα(µ). Then ‖pn‖ → ‖p‖ > 0 and since |pαn − pα| ≤ |pn|α+ |p|α. The generalized version of the dominated

convergence theorem states that (see [32, Ch. 2, Ex. 20] or [33, p.139, Problem 19]), if {un} is a sequence of measurable

functions on a measurable space (X,X ) such that un → u µ-a.e. and if vn, v ∈ L1(µ) are such that |un| ≤ vn µ-a.e. and

vn → v in L1(µ), then un → u in L1(µ). By taking, un = pαn, and vn = |pn|α + |p|α, the above theorem yields pαn → pα in

L1(µ). From these, we have

(pn/‖pn‖)
α → (p/‖p‖)α in L1(µ),

i.e., p′n → p′ in L1(µ), which implies p′n/q
′ → p′/q′ in L1(Q′). (Observe that the argument thus far does not use the

assumption that α < 1 and is therefore equally applicable for an α > 1).

Teboulle and Vajda showed in [36, Lemma 1] that the mapping h 7→
∫

f(h) dν =
∫

h1+ρ dν is lower semicontinuous

in L1(ν) for a probability measure ν on (X,X ). Put hn = p′n/q
′, h = p′/q′, and ν = Q′. Then, we just established in the

previous paragraph that hn → h in L1(ν). Using (3) and the lower semicontinuity result of Teboulle and Vajda, we have

lim inf
n→∞

If (p
′
n, q

′) ≥ If (p
′, q′) ≥ 0. (65)

Since 1/ρ log(·+ 1) is increasing and continuous in [0,∞), using the definition in (4), (65) implies (64) which establishes the

lower semicontinuity result for α < 1.

We now deal with the other case. Fix α > 1. Observe that the dual space of the Banach space Lα(µ) is Lα(µ)∗ = L
α

α−1 (µ),
and therefore (q/‖q‖)α−1 ∈ Lα(µ)∗. Consequently, the mapping defined by

T : Lα(µ) ∋ h 7→ T (h) =

∫

h ·

(

q

‖q‖

)α−1

dµ ∈ R

is a bounded linear functional and therefore continuous. If pn → p in Lα(µ), then ‖pn‖ → ‖p‖, and therefore pn/‖pn‖ → p/‖p‖
in Lα(µ). By the continuity of T , we have

∫
(

pn
‖pn‖

)(

q

‖q‖

)α−1

dµ = T

(

pn
‖pn‖

)

→ T

(

p

‖p‖

)

, as n → ∞,

=

∫
(

p

‖p‖

)(

q

‖q‖

)α−1

dµ.

Taking 1/ρ log(·) on both sides, and using (5), we see Iα(pn, q) → Iα(p, q) where Iα(p, q) may possibly be +∞.
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C. Proof of Proposition 4:

From (4), we may write

Iα(p, q) =
1

ρ
log[sgn(ρ) · If̃ (q

′, p′) + 1], (66)

where f̃(u) = sgn(ρ) · (u−ρ − 1), u ≥ 0.

Let qn → q in Lα(µ). Then, as in the proof of Proposition 3, we have that q′n/p
′ → q′/p′ in L1(P ′). Following the argument

of Proposition 3, we apply the lower semicontinuity result of Teboulle and Vajda [36, Lemma 1] with f̃ playing the role of

f , and we have

lim inf
n→∞

If̃ (q
′
n, p

′) ≥ If̃ (q
′, p′) ≥ 0. (67)

If either (a) ρ < 0 and If̃ (q
′, p′) = 1, or (b) ρ > 0 and If̃ (q

′, p′) = ∞, then using the first inequality in (67) and using (66)

one easily verifies the limit

lim inf
n→∞

Iα(p, qn) = Iα(p, q) = +∞. (68)

For all other cases, we recognize that 1/ρ log[sgn(ρ) · u + 1] is an increasing continuous function for u ∈ [0, 1] when ρ < 0
and for u ∈ [0,∞) when ρ > 0. Using this, the first inequality in (67), and (4), we have the following analog of (64)

lim inf
n→∞

Iα(p, qn) ≥ Iα(p, q). (69)

Equations (68) and (69) together establish the lower semicontinuity in the second argument.

D. Proof of Proposition 5:

Let p0, p1 ∈ B(q, τ), i.e., using (5),

sgn(ρ)

∫

pλ
‖pλ‖

(

q

‖q‖

)α−1

dµ ≤ sgn(ρ) · t for λ = 0, 1, (70)

where t = exp{τρ}. Now, let us consider λ ∈ [0, 1], and define

pλ := λp1 + (1− λ)p0. (71)

We then have the following chain of inequalities:

sgn(ρ)

∫

pλ
‖pλ‖

(

q

‖q‖

)α−1

dµ

(a)
=

sgn(ρ)

‖pλ‖

[

λ

∫

p1

(

q

‖q‖

)α−1

dµ+ (1 − λ)

∫

p0

(

q

‖q‖

)α−1

dµ

]

(b)

≤
sgn(ρ)

‖pλ‖
[λ‖p1‖t+ (1− λ)‖p0‖t]

= sgn(ρ) · t ·
[λ‖p1‖+ (1− λ)‖p0‖]

‖pλ‖
(c)

≤ sgn(ρ) · t · 1,

where (a) follows by plugging in (71), (b) follows from (70), and (c) follows because Minkowski’s inequality gives that, for

α > 1, ‖pλ‖ ≤ λ‖p1‖+ (1 − λ)‖p0‖ while for 0 < α < 1, this inequality is reversed.

Using (5) once again, this time to write the above inequality in terms of Iα, we get Iα(pλ, q) ≤ τ , which implies

pλ ∈ B(q, τ) for λ ∈ [0, 1].

E. Counterexamples as indicated Remark 11:

Let X = (0, 1). Let µ = Q be the Lebesgue measure on X. Let

L =

{

P :

∫

fn dP = 0, n = 1, 2, 3, . . .

}

, (72)
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where

fn(x) :=























3+
√
n

4 0 < x < 1
4n

3
4

1
4n ≤ x < 1

4

− 1
4 − 1

4
√
n

1
4 ≤ x < 1

2

− 1
4

1
2 ≤ x < 1.

(73)

Then Q ∈ L. Clearly limn→∞ fn = 3
4 · 1{(0, 1

4
)} −

1
4 · 1{( 1

4
,1)}. Now g = limn→∞ fn is in the closure of the linear span of

{fn}n≥1, but not in the linear span of {fn}n≥1. Let R be a probability measure whose µ-density r satisfies qα−1 = c rα−1+g.

Then c =
∫

qαdµ/
∫

qrα−1. Notice that the inequality in (30), using (5), is equivalent to
∫

p(qα−1 − crα−1)dµ ≥ 0 if α > 1 (74)

≤ 0 if α < 1. (75)

α > 1: Necessary condition is not sufficient: Let P be a probability measure defined by

dP

dQ
(x) =











1
5
√
x

0 < x < 1
4

0 1
4 ≤ x < 3

5

2 if 3
5 ≤ x < 1.

(76)

It is easy to check that P ∈ L. The left-hand side of (74), for the P defined above, evaluates to −1/20 � 0. Therefore, by Th.

10, Q cannot be the forward Iα-projection of R on L.

α > 1: Sufficient condition is not necessary: Define R by setting g = − limn→∞ fn. The left-hand side of (74) is
∫

g dP = −

∫

( lim
n→∞

fn) dP

≥ − lim
n→∞

∫

fn dP

= 0,

where the last inequality follows by Fatou’s lemma. Since this holds for every P ∈ L, by Th. 10, Q is the Iα-projection of

R on L.

For α < 1, define R by setting g = − limn→∞ fn and g = limn→∞ fn, respectively to show that the necessary condition

is not sufficient and vice-versa.
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[26] T. van Erven and P. Harremoës, “Rényi divergence and Kullback-Leibler divergence,” Information Theory, IEEE Transactions on, vol. 60, no. 7, pp.

3797–3820, July 2014.
[27] M. Ashok Kumar and R. Sundaresan, “Minimization problems based on a parametric family of relative entropies II: Reverse projection,” arXiv:1410.5550,

October 2014.
[28] I. Csiszár, “Information-type measures of difference of probability distributions and indirect observations,” Studia Sci. Math. Hungar., vol. 2, pp. 299–318,

1967.
[29] M. S. Pinsker, Information and Information Stability of Random Variables and Processes, ser. Holden-Day series in time series analysis. Holden-Day,

San Francisco, 1964.
[30] R. Bhatia, Notes on Functional Analysis. New Delhi, India: Hindustan Book Agency, 2009.
[31] I. Csiszár, “On topological properties of f -divergences,” Studia Sci. Math. Hungar., no. 2, pp. 329–339, 1967.
[32] G. B. Folland, Real Analysis: Modern Techniques and their Applications, 2nd ed. John Wiley and Sons, Inc., 1999.
[33] F. Jones, Lebesgue Integration on Euclidean Spaces. Jones and Bartlett Mathematics, Revised Edition, 2001.
[34] H. L. Royden, Real Analysis, 3rd ed. Delhi, India: Pearson Education (Singapore) Pte. Ltd., Indian Branch, 1988.
[35] J. M. Borwein and A. S. Lewis, “Convergence of best entropy estimates,” SIAM J. Optimization, vol. 1, pp. 191–205, 1991.
[36] M. Teboulle and I. Vajda, “Convergence of best entropy estimates,” Information Theory, IEEE Transactions on, vol. 39, no. 1, pp. 297–301, January

1993.


	I Introduction
	II The relative - entropy
	III Existence and Uniqueness of the Forward I-projection
	IV Pythagorean property
	V Example: Forward I-projection for a linear family
	VI Transitivity and Iterated Projections for a linear family
	VII Concluding remarks
	Appendix
	A Proof of Lemma ??:
	B Proof of Proposition ??:
	C Proof of Proposition ??:
	D Proof of Proposition ??:
	E Counterexamples as indicated Remark ??:

	References

