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Abstract

Approximate multidimensional Riemann solvers are essential building blocks in de-

signing globally constraint-preserving finite volume time domain (FVTD) and discontinu-

ous Galerkin time domain (DGTD) schemes for computational electrodynamics (CED). In

those schemes, we can achieve high-order temporal accuracy with the help of Runge-Kutta

or ADER time-stepping. This paper presents the design of a multidimensional approxi-

mate Generalized Riemann Problem (GRP) solver for the first time. The multidimensional

Riemann solver accepts as its inputs the four states surrounding an edge on a structured

mesh, and its output consists of a resolved state and its associated fluxes. In contrast, the

multidimensional GRP solver accepts as its inputs the four states and their gradients in all

directions; its output consists of the resolved state and its corresponding fluxes and the gra-

dients of the resolved state. The gradients can then be used to extend the solution in time.

As a result, we achieve second-order temporal accuracy in a single step.

In this work, the formulation is optimized for linear hyperbolic systems with stiff, linear

source terms because such a formulation will find maximal use in CED. Our formulation

produces an overall constraint-preserving time-stepping strategy based on the GRP that

is provably L-stable in the presence of stiff source terms. We present several stringent

test problems, showing that the multidimensional GRP solver for CED meets its design

accuracy and performs stably with optimal time steps. The test problems include cases

with high conductivity, showing that the beneficial L-stability is indeed realized in practical

applications.

Keywords: Conservation laws, Hyperbolic partial differential equations, Multidimen-

sional Riemann problem, Maxwell’s equations
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1 Introduction

Computational Electrodynamics (CED) which deals with the numerical solution of Maxwell’s

equations, plays a vital role in many problems in science and engineering. The finite-difference

time-domain (FDTD) method [1, 2, 3, 4, 5] has been a mainstay of CED applications. The

primary strength of FDTD stems from its use of a beneficial staggering of the electric and mag-

netic fields to ensure that the global constraints (inherent in Gauss’s law and the absence of

magnetic monopoles) are discretely represented on the computational mesh. FDTD is globally

constraint-preserving. However, the primary weakness of standard FDTD stems from the fact

that it is restricted to second-order accuracy, especially when electromagnetic radiation interacts

with material media.

The differential form of Maxwell’s equations has a dissipationless and dispersionless limit.

As a result, it is beneficial for numerical schemes to be as dissipationless and dispersionless

as possible. This has given rise to the discontinuous Galerkin time domain (DGTD) methods

[6, 7, 8, 9, 10, 11, 12, 13]. Such methods do not satisfy the constraints in a global sense; though

some of them do satisfy the constraints locally within each element. Even so, since they are

based on discontinuous Galerkin methods, their strong point is that they can reach high orders

of accuracy. It is very desirable to retain good traits of the FDTD and DGTD schemes discussed

above.

In an effort to design CED schemes that offer the best of both worlds – global constraint

preservation from FDTD and higher order from DGTD – we have embarked on an effort to

design such schemes. Therefore, finite volume time domain (FVTD) schemes that globally

preserve constraints and also attain high order of accuracy were presented in [14, 15, 16]. DGTD

schemes with those same favorable attributes were presented in [17, 18, 19]. The two central

ingredients of those schemes are a high order constraint-preserving reconstruction of vector

fields [20, 21, 22, 23, 14, 15, 16, 24] and multidimensional Riemann solvers [25, 26, 27, 28, 29,

30, 31, 32] The constraint-preserving reconstruction provides spatially high order accuracy. The

multidimensional Riemann solver folds in the essential physics that electromagnetic phenomena

are mediated by wave propagation that invariably occurs in all directions. It also gives us a

natural, physics-based approach for obtaining the electric and magnetic fields at the edges of the

computational mesh.

Furthermore, Maxwell’s equations have symplectic and multi-symplectic structures. Con-

sidering this, Leapfrog time integration has been the chosen strategy for standard FDTD as it

is a form of symplectic integrator. However, it is well-known that FDTD results in high level

of dispersion error [4]. As this numerical dispersion error accumulates over time, simulation of

long-term behaviour and long-duration electromagnetic wave propagation with FDTD requires

an extremely fine mesh, and finer mesh in conjunction with courant stability criteria results in

prohibitively high computational time for such simulations with FDTD. There have been sev-

eral efforts to reduce the dispersion error by modifying FDTD [33]. However, considering all

the desirable features of higher order numerical methods for CED, such as higher order spatial

and temporal accuracy, ability to handle complex geometry, low dispersion error, higher-order

CED schemes generally tend to use low-storage five-stage fourth-order Explicit Runge-Kutta

method (LSERK4)[34, 35, 36, 8, 37, 38], strongly stability-preserving Runge-Kutta (SSPRK)
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[39, 40, 19, 18] or ADER (Arbitrary DERivatives in space and time) [41, 42, 43, 44] time-

discretizations [45, 16].

To compare briefly the computational complexities of Runge-Kutta and ADER time integra-

tion schemes for CED, we first note that each stage in a Runge-Kutta time-discretization is only

first order accurate in time. For higher-order constraint-preserving time evolution of CED with

Runge-Kutta schemes is, therefore, obtained by the application of a multidimensional Riemann

solver at the edges of the mesh in order to obtain the edge-collocated integrals of the electric and

magnetic fields. Thus each stage of a Runge-Kutta time-discretization is relatively inexpensive,

but the overall scheme can be more expensive because multiple stages are used. Since the CED

equations can have stiff source terms, the inclusion of stiff source terms can also add to the cost

of a Runge-Kutta time-discretization. The ADER update only requires a single stage ADER

formulation within each zone to make an “in-the-small” evolution within each zone. Once this

is available, constraint-preserving time evolution of CED can be obtained with volumetrically-

based ADER schemes by invoking a multidimensional Riemann solver at the edges of the mesh.

However, for volumetrically-based ADER schemes the space-time ADER construction within a

zone can itself be quite expensive. The treatment of stiff source terms also adds to the cost of an

ADER scheme.

The utility of a GRP approach stems from the fact that a GRP can utilize not just the input

states, but also their gradients. Realize that those gradients are always available, and they can al-

ways be provided by the spatial reconstruction. The intricacy in designing a GRP solver consists

of finding ways to take the gradients of the input states and using them to obtain gradients in the

resolved state. Once the gradients in the resolved state are obtained, one can obtain at least a

second order accurate update in one stage. While a few exact and approximate GRP solvers have

been designed that go beyond second order accuracy [46, 47, 48, 49, 50, 51, 52, 53, 54, 55], the

majority of GRP solvers have been restricted to second order in time [56, 57, 58, 59, 60, 61, 62].

All the GRP constructions that we know of have been one-dimensional. Since multidimensional

Riemann solvers have begun to play such an important role in CED, and also other fields, it is

of great interest to obtain generalized Riemann problem versions of the same.

In globally-constraint preserving schemes for CED, we apply a multidimensional Riemann

solver to the edges of the mesh. Such multidimensional Riemann solvers have been designed

[25, 26, 27, 28, 63, 31, 32]. However, as far as we know, this is the first effort to formulate

a multidimensional generalized Riemann problem solver that works seamlessly. The goal of

this first paper is to design a multidimensional generalized Riemann solver for CED. We choose

CED because it is a linear hyperbolic system and it is very beneficial to study the problem in the

context of a linear system before tackling the fully non-linear case. The fully non-linear case

will be formulated in a subsequent paper. We formulate the problem so that it can be used for

any general linear hyperbolic system, but we also specialize our results for CED.

CED, just like aeroacoustics, is very special in that most applications are linear. If non-

linearities are present, they are usually mild. But that only changes the emphasis of the solution

methodology. Because waves can propagate without dissipation or dispersion in electrodynam-

ics and aeroacoustics, a substantial premium is placed on minimizing numerical dispersion and

dissipation. There has been a growing realization that the availability of GRP solvers can lead

to a new generation of low-dissipation, low-dispersion Taylor Series-based (TS-based) schemes
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[64, 65, 66], though that field is perhaps still emergent. The schemes are referred to as Taylor

series-based because the GRP solver delivers not just the numerical flux but also its derivative

in time. The novelty of our work lies in presenting a multidimensional GRP solver, which can

be an essential building block for the development of low dissipation, low dispersion TS-based

schemes for CED, aeroacoustics and other analogous fields. We also show how linear stiff source

terms can be included in the multidimensional GRP solver.

The rest of the paper is organized as follows. In Section 2 we describe Maxwell’s equations

and globally constraint-preserving solution methods for those equations. The multidimensional

GRP solver is described in Section 3. Section 4 gives a pointwise strategy for implementa-

tion. Section 5 provides accuracy analysis; Section 6 provides several stringent test problems.

Section 7 draws some conclusions.

2 Maxwell equation

We split this Section into two parts. Section 2.1 introduces Maxwell’s equations. Section 2.2

describes their globally constraint-preserving numerical solution using a GRP solver.

2.1 Introduction to Maxwell’s equations

The equations of CED can be written as two evolutionary curl-type equations for the magnetic

induction and the electric displacement. The first of these is Faraday’s law, given by,

∂ BBB

∂ t
+∇×EEE =−MMM, (2.1)

where BBB is the magnetic induction (or magnetic flux density), EEE is the electric field and MMM is the

the magnetic current density. The magnetic current density is zero for any physical domain. The

second evolutionary equation for the electric displacement is the extended Ampere’s law, given

by

∂ DDD

∂ t
−∇×HHH =−JJJ, (2.2)

where DDD is the electric displacement (or electric flux density), HHH is the magnetic field vector

and JJJ is the electric current density. The structure of the above two equations is such that the

magnetic induction and the electric displacement also satisfy the following two non-evolutionary

involution constraints, given by

∇ ·BBB = ρM, (2.3)

and

∇ ·DDD = ρE . (2.4)

Here ρM and ρE are the magnetic and electric charge densities. For any physical medium ρM = 0

since magnetic monopoles do not exist.
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The involutionary nature of the above equations ensures that the electric charge density sat-

isfies the equation

∂ ρE

∂ t
+∇ · JJJ = 0, (2.5)

and the magnetic charge density satisfies the equation

∂ ρM

∂ t
+∇ ·MMM = 0. (2.6)

In material media we also have the constitutive relations

BBB = µHHH, (2.7)

and

DDD = εEEE, (2.8)

where µ is a 3×3 permeability tensor and ε is the analogous 3×3 permittivity tensor. For

most material media, these tensors are diagonal. The eigenstructure of the hyperbolic sys-

tem is most easily found for the diagonal case, where we make the simplifying assumption

ε = diag{εxx,εyy,εzz} and µ = diag{µxx,µyy,µzz}. The corresponding eigenstructure has been

catalogued in Sub-section II.2 of [15]. We will also need the inverses of the permittivity and

permeability tensors. These 3×3 inverse matrices will also be symmetric, and we denote them

as ε̃εε and µ̃µµ .

The current density is related to the electric field via

JJJ = σEEE, (2.9)

where σ is the conductivity. Similarly, the magnetic current density is related to the magnetic

field via

MMM = σ∗HHH, (2.10)

where is the equivalent magnetic loss, which is again zero in physical media, but may be non-

zero when imposing boundary conditions in CED.

2.2 Globally constraint-preserving numerical solution of Maxwell’s equations

The facially-collocated normal components of the electric displacement and the magnetic induc-

tion constitute the primal variables of our scheme In Figure 1, these vector fields are shown by

the thick red arrow and the thick blue arrow, respectively, in each of the faces of the cuboidal el-

ement. In a finite-volume sense, these primal variables are actually taken to be facial averages of

the normal components of the electric displacement and the magnetic induction. The overall task

consists of finding the edge-collocated components of the magnetic field vector and the electric

field vector, shown in Figure 1. These are shown with the thinner red arrow and the thinner blue

5



Figure 1: Schematic diagram depicting the collocation of the primal and dual variables of

Maxwell’s equations. Primal variables of the scheme, given by the normal components of the

magnetic induction and electric field displacement, are facially-collocated. They undergo an up-

date from Faraday’s law and the generalized Ampere’s law, respectively. The components of the

primal magnetic induction vector are shown by the thick blue arrows, while the components of

the primal electric displacement vector are shown by the thick red arrows. The edge-collocated

electric fields, which are used for updating the facial magnetic induction components, are shown

by the thin blue arrows close to the appropriate edge. The edge-collocated magnetic fields,

which are used for updating the facial electric displacement components, are shown by the thin

red arrows close to the appropriate edge.
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arrow, respectively, next to the edges of the zone shown in Figure 1. In a finite-volume sense,

these are actually averages in one space dimension (taken to be the length of the element’s edge)

and the time dimension (evaluated over the timestep). The order of spatial reconstruction of the

electric displacement and the magnetic induction then determines the order of spatial accuracy

of our numerical scheme. At second order, volumetric ADER schemes of the sort designed in

[41] and [43] can indeed provide a one-step update. However, a similar one-step update can be

obtained using the multidimensional GRP solver designed here.

A single step constraint-preserving update for the entire set of CED equations, consistent

with the curl-type update in Equations (2.1) and (2.2) can be written at each face of the zone
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. (2.11f)

The reconstructed values for the electric displacement and magnetic induction, as well as their

gradients, form the inputs to the multidimensional GRP. The multidimensional GRP is invoked

at each edge. As an output, the GRP gives the time evolution of the resolved state that straddles

the edge being considered. From this resolved state, we can evaluate the discrete curl of the

electric and magnetic fields along each edge to obtain the globally constraint-preserving update

in Equation (2.11). We also have to pay attention, of course, to the source terms for the electric

current density and the magnetic current density; these terms are usually stiff and should be

handled with a scheme that is unconditionally stable. Furthermore, we want the asymptotic be-
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haviour of the discrete update in Equation (2.11) to be such that as ∆t → ∞ the discrete treatment

of the source terms gives the same asymptotic result as the differential form of the PDE. Such

an unconditional stability is also known as L-stability, and we discuss this in a later section.

3 Design of a multidimensional GRP solver for Maxwell’s equa-

tions and linear hyperbolic partial differential equations in gen-

eral

Maxwell’s equations can be written as a system of PDE in the following manner

∂ U

∂ t
+

∂ FFF(U)

∂x
+

∂ GGG(U)

∂y
+

∂ HHH(U)

∂x
= SSS(U), (3.1)

where

U =
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Dz

Bx
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, FFF =



















0
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−µ̃xyBx − µ̃yyBy − µ̃yzBz

0

−ε̃xzDx − ε̃yzDy − ε̃zzDz

ε̃xyDx + ε̃yyDy + ε̃yzDz



















, GGG =



















−µ̃xzBx − µ̃yzBy − µ̃zzBz

0

µ̃xxBx + µ̃xyBy + µ̃xzBz

ε̃xzDx + ε̃yzDy + ε̃zzDz

0

−ε̃xxDx − ε̃xyDy − ε̃xzDz



















,

HHH =



















µ̃xyBx + µ̃yyBy + µ̃yzBz

−µ̃xxBx − µ̃xyBy − µ̃xzBz

0

−ε̃xyDx − ε̃yyDy − ε̃yzDz

ε̃xxDx + ε̃xyDy + ε̃xzDz

0



















, SSS =



















−σ(ε̃xxDx + ε̃xyDy + ε̃xzDz)
−σ(ε̃xyDx + ε̃yyDy + ε̃yzDz)
−σ(ε̃xzDx + ε̃yzDy + ε̃zzDz)

−σ∗(µ̃xxDx + µ̃xyDy + µ̃xzDz)
−σ∗(µ̃xyDx + µ̃yyDy + µ̃yzDz)
−σ∗(µ̃xzDx + µ̃yzDy + µ̃zzDz)



















.

In the above equations, µ̃i j and ε̃i j represents different components of µ̃µµ and ε̃εε tensors where

µ̃µµ and ε̃εε are inverses of 3×3 symmetric electric permittivity tensor εεε and symmetric magnetic

permeability tensor µµµ , respectively.

In light of the linearity of the fluxes and source terms in Maxwell’s equations, the above

equation can be written in terms of the Jacobians of the fluxes and the Jacobian of the source

terms as follows

∂ U

∂ t
+ ÃAA

∂ U

∂x
+ B̃BB

∂ U

∂y
+C̃CC

∂ U

∂ z
=−Σ̃ΣΣU. (3.2)

In the above equation, ÃAA, B̃BB and C̃CC are solution-independent characteristic matrices obtained

from the x,y,z-fluxes. Likewise, Σ̃ΣΣ =− ∂ SSS(U)

∂U
is a constant matrix, where the negative sign has

been introduced just to respect the fact that the current terms in Maxwell’s equations are written

with a negative sign in front. We would like to design a multidimensional approximate GRP

solver for Equation (3.2) specializing it to Maxwell’s equations.
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Figure 2: One dimensional solvers that operate at the faces of a mesh. Left panel: One di-

mensional approximate Riemann solver. It takes two states UL and UR at the face as inputs and

provides a single resolved state U∗ as we use HLL Riemann solver here. Right panel: One

dimensional Generalized Riemann solver for linear hyperbolic system. It takes left state UL,

right state UR and their derivatives ∂rUL and ∂rUR as inputs where r represents any one of the

x, y, z direction in a Cartesian mesh and provides a resolved state U∗ and the derivative ∂rU
∗

as outputs. As for linear hyperbolic systems (like Maxwell’s equations) maximal wave speeds

SL,SR are constant, the characteristics curves become straight lines even for GRP.

To describe the development of multidimensional GRP in a step-by-step manner, we split

this section into several parts. In Section 3.1, we briefly describe the 1D Riemann problem

(RP) and generalized Riemann problem (GRP) solvers. This provides us with the lead in to

multidimensional Riemann solvers and the multidimensional GRP solver without any source

term that we describe in Section 3.2. In Section 3.3, we show how this can be used to obtain a

GRP without a source term. In Section 3.4, we show how the solution of the GRP is obtained in

presence of a linear stiff source term.

3.1 One dimensional Riemann problem and generalized Riemann problem solvers

for linear system

A one-dimensional Riemann solver operates at the faces of a mesh because that is where the

one-dimensional discontinuities can be diagnosed on a mesh. It takes the two states at a face as

input states and provides the resolved state and one-dimensional flux as output.

Analogously, a one-dimensional GRP solver also operates at the faces of a mesh. However,

it takes the two states at a face, as well as their spatial gradients, as input states and provides

the resolved state and one-dimensional flux and the gradient of the resolved state, as output.

The output can then be used to extend the resolved state and its fluxes in time. Please note

that we consider the approximate HLL Riemann solver here, which produces only one constant

intermediate state between two interacting states. The expression for resolved state is given by

[67]:

U∗ =− 1

SR −SL

[

(ÃAA−SRI)UR − (ÃAA−SLI)UL

]

, I : Identity Matrix, (3.3)
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where SR and SL are extremal speeds in right and left directions.

For a linear hyperbolic system, as SR and SL is constant, we can find the derivatives of the

resolved state analytically with respect to any arbitrary r direction where r can be any one of

x, y, or z in a Cartesian mesh, and it is given by,

∂rU
∗ =− 1

SR −SL

[

(ÃAA−SRI) ∂rUR − (ÃAA−SLI) ∂rUL

]

. (3.4)

We use expressions (3.3) and (3.4) in the next section to obtain resolved states and their deriva-

tives from one dimensional Riemann solvers that are required for a complete description of our

multidimensional GRP-based scheme for linear hyperbolic systems.

3.2 Multidimensional Riemann solver and generalized Riemann solver for linear

system

A multidimensional Riemann solver operates at the edges of a mesh because that is where the

multidimensional discontinuities can be diagnosed on a mesh. We assume a Cartesian mesh

to simplify the discussion, but the discussion is indeed generalizable. The multidimensional

Riemann solver takes the four states that come together at an edge as input states and provides

the resolved state (traditionally called a strongly-interacting state) and multidimensional fluxes

as output. Analogously, the multidimensional GRP solver also operates at the edges of the mesh.

However, the multidimensional GRP solver takes four states together with their spatial gradients

as inputs. As outputs, it produces the strongly-interacting state and multidimensional fluxes, as

well as the gradients of the strongly-interacting state. The output can then be used to extend the

strongly-interacting state and its fluxes in time.

The edge-based arrangement of electric and magnetic fields for CED in Figure 1 shows

that the multidimensional GRP solver provides exactly the desired edge-based data at the very

location this data is needed. This highlights the special utility of the multidimensional GRP

solver for CED and other involution-constrained applications.

The GRP solver is two dimensional, because we would like to invoke it at the edges of the

mesh. For illustration, we choose the GRP solver invoked at z-edge, and as a result, we focus on

the xy-plane. However, we will retain derivatives with respect to all three axes in Equation (3.2)

as we realize that it might be beneficial to retain the variation in the third direction in fully

three-dimensional CED problems.

For a structured mesh, the specification of the multidimensional Riemann problem at the

edges of a Cartesian mesh requires the specification of four input states [25, 26, 27]. These input

states at the initial time are called URU (for right-up), ULU (for left-up), ULD (for left-down) and

URD (for right-down). Figure 3a shows the input states at the z-edge of a mesh, where one is

looking down along the z-axis. As soon as those input states begin to interact, i.e. at a time that

is later than the initial time, four one dimensional Riemann problems get established between

the four states. Therefore, between the states URU and ULU an x-directional Riemann problem

gives rise to the resolved state U∗
U ; another x-directional Riemann problem between the states

URD and ULD gives rise to the resolved state U∗
D ; a y-directional Riemann problem between

the states URU and URD gives rise to the resolved state U∗
R ; similarly a y-directional Riemann

problem between the states ULU and URD gives rise to the resolved state U∗
L. Figure 3b shows
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Figure 3: a) Four input states ULU , URU , ULD, URD at the z-edge of a mesh, where one is

looking down along the z-axis. b) Strongly-interacting state from multidimensional Riemann

problem and resolved states from the one-dimensional Riemann problems. While the left panel

is in physical space, the right panel is best shown in terms of the wave speeds. Here, ξ = x/t

and ψ = y/t are the wave speeds in the x- and y-directions.

how these resolved states from the one-dimensional Riemann problems are established. When

these one-dimensional Riemann problems interact, they form another self-similarly evolving

strongly-interacting state U∗ which yields corresponding x and y fluxes FFF∗ and GGG∗. Figure 3b

also shows this strongly-interacting state. While Figure 3a is in physical space, Figure 3b is

best shown in terms of the wave speeds. Please note that we use the approximate HLL Riemann

solver which produces only one constant intermediate state between two interacting states. As

a result, the four resolved states U∗
R, U∗

L, U∗
U , U∗

D are constant states without sub-structure.

Likewise, the state U∗ has no sub-structure.

Because the characteristic matrices are constant, the extremal speeds in the x-direction span

ξ ∈ [SL, SR] and in the y-direction span ψ ∈ [SD, SU ] are also constant. SR, SL are extremal

speeds associated with characteristic matrix ÃAA and SU , SD are extremal speeds associated with

characteristic matrix B̃BB. For the case of CED with diagonal permittivity and permeability, we

have

SR = max(
√

µ̃zzε̃xx,
√

µ̃yyε̃zz), SL =−SR,

SU = max(
√

µ̃xxε̃zz,
√

µ̃zzε̃xx), SD =−SU . (3.5)

So we see that the extremal wave speeds are very easy to calculate for CED.

We now describe how one transitions from a multidimensional Riemann solver to a mul-

tidimensional GRP solver. Figure 4 shows the input data for the multidimensional GRP – the

four input states from Figure 3a now come in with their gradients in all directions. Therefore,

along with the state URU we also have its three spatial gradients ∂xURU , ∂yURU , ∂zURU . These

gradients can be obtained from any higher order reconstruction in the neighbouring right-up
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zone. Figure 4 shows that similar gradients can be obtained from other neighbouring zones.

We also show the resolved states associated with the one-dimensional Riemann problems and

the minimum number of gradients that we should retain in those resolved states. The strongly-

interacting state now has all three gradients. Once the gradients have been obtained in the

strongly-interacting state, they can be used to obtain the “in-the-small” time-evolution of the

strongly-interacting state. This can be done in the sense of a Lax-Wendroff procedure, resulting

in a multidimensional GRP solver that is second order in time.

Figure 4: Input data for the multidimensional GRP – the four input states from Figure 3a now

come in with their gradients in all directions. We also show the resolved states of the one-

dimensional Riemann problems and the minimum number of gradients that we should retain in

those resolved states. The strongly-interacting state now has all three gradients.

First, we focus on the resolved states, represented by U∗
U , U∗

D, U∗
R, U∗

L in, Figure 4 that

emerge when we apply the one-dimensional Riemann solvers taking two input states at a time

from four input states. For example, we can obtain the resolved state U∗
U taking URU and ULU

as inputs and using Equation (3.3) and it is given by:

U∗
U =− 1

SR −SL

[

(ÃAA−SRI)URU − (ÃAA−SLI)ULU

]

, I : Identity Matrix. (3.6)

Now that we have obtained U∗
U , we can also find the associated y-flux in the upper resolved state
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as GGG∗
U = B̃BBU∗

U .

We can see from Figure 4, that we already have ∂yURU and ∂yULU . Also, as we deal with a

linear hyperbolic system with constant extremal speeds SR and SL here, we can obtain the fol-

lowing expressions for partial derivative of the resolved state in y direction using Equation (3.4):

∂yU∗
U =− 1

SR −SL

[

(ÃAA−SRI) ∂yURU − (ÃAA−SLI) ∂yULU

]

. (3.7)

Similarly, we can obtain the partial derivative of the resolved state with respect to z using Equa-

tion (3.4) and it is given by

∂zU
∗
U =− 1

SR −SL

[

(ÃAA−SRI) ∂zURU − (ÃAA−SLI) ∂zULU

]

. (3.8)

We can obtain analogous results for U∗
D by replacing U with D in the subscript of Equations (3.6)

to (3.8).

Now let us focus on the states URU and URD and the associated extremal speeds SU , SD in

Figure 4 and we have a y-directional Riemann problem. Using Equation (3.3), we obtain

U∗
R =− 1

SU −SD

[

(B̃BB−SU I)URU − (B̃BB−SDI)URD

]

. (3.9)

We have obtained U∗
R, we can also find the associated x-flux in the right resolved state as

FFF∗
R = ÃAAU∗

R. The expressions (3.3) and (3.4) are used in the next section to develop a complete

multidimensional GRP-based solver.

We can see from Figure 4 that we already have ∂yURU and ∂yURD . Therefore, for a lin-

ear hyperbolic system and constant speeds SU and SD, we can obtain x and z derivative of the

resolved state UR using Equation (3.4).

∂xU∗
R =− 1

SU −SD

[

(B̃BB−SU I) ∂xURU − (B̃BB−SDI) ∂xURD

]

, (3.10)

∂zU
∗
R =− 1

SU −SD

[

(B̃BB−SU I) ∂zURU − (B̃BB−SDI) ∂zURD

]

. (3.11)

We can obtain analogous results for U∗
L by replacing R with L in the subscript of Equations (3.9)

to (3.11).

At this point, we have all the necessary expressions to obtain the strongly-interacting state

U∗ as depicted in Figure 4 and it can be obtained using Equation (12) in [27],

U∗ =−1

2





1

SR −SL

[

(ÃAA−SRI)U∗
R − (ÃAA−SLI)U∗

L

]

+
1

SU −SD

[

(B̃BB−SU I)U∗
U − (B̃BB−SDI)U∗

D

]



. (3.12)

14



From Equation (3.12), we can obtain FFF∗ = ÃAAU∗ and GGG∗ = B̃BBU∗ . Also, Equation (3.12) can be

formally differentiated in the z-direction to obtain ∂zU
∗ as follows:

∂zU
∗ =−1

2





1

SR −SL

[

(ÃAA−SRI)∂zU
∗
R − (ÃAA−SLI)∂zU

∗
L

]

+
1

SU −SD

[

(B̃BB−SU I)∂zU
∗
U − (B̃BB−SDI)∂zU

∗
D

]



. (3.13)

For the x- and y-gradients of the strongly-interacting state, a more sophisticated treatment is

described in the ensuing paragraphs. For those who seek the x- and y-fluxes associated with the

state U∗, please see Equations (13) and (14) of [27].

We now focus on introducing x- and y-gradients in the strongly-interacting state in Figure 4.

Consider a general linear hyperbolic system with variation in the x-direction. It can be formally

written as

∂tU+ ÃAA∂xU = 0

. If we differentiate that equation with respect to the x-coordinate, it becomes

∂t(∂xU)+ ÃAA∂x(∂xU) = 0

. We see, therefore, that the x-gradient of the solution vector also satisfies a linearized Riemann

problem with the same foliation of waves as the original linear hyperbolic system. This insight

was first used by Titarev and Toro in [48] to obtain the gradient of the resolved state inside the

Riemann fan. It also explains why we will only need ∂xU∗
R and ∂xU∗

L to obtain ∂xU∗. Note,

however, from an examination of Equation (3.10) that ∂xU∗
R and ∂xU∗

L do indeed depend on all

the x-gradients from all the input states. Consequently, we obtain ∂xU∗ via a genuinely multidi-

mensional contribution from all the input states. Similarly, we will only need ∂yU∗
R and ∂yU∗

L to

obtain ∂yU∗. In the next two paragraphs, we make this process explicit. We will subsequently

provide all possible details using CED as an example.

From the discussion in the previous paragraph, we have understood that the longitudinal (i.e.

x-directional) gradients of the strongly-interacting state also satisfy the linear system

∂t(∂xU∗)+ ÃAA∂x(∂xU∗) = 0, (3.14)

with the initial conditions:

∂xU∗|t=0 = ∂xU∗
L if x < 0

∂xU∗|t=0 = ∂xU∗
R if x > 0.

We now use the Titarev-Toro-style linearization. Because the characteristic matrix is con-

stant, the solution of the linear system is easily found. Within the context of the linearization in
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Equation (3.14), we obtain the solution

∂xU∗ =























∂xU∗
L when SL ≥ 0

1
2

[

∂xU∗
L +∂xU∗

R

]

+ 1
2

mx

∑
m=1

αm
x rm

x − 1

2

M

∑
m=mx+1

αm
x rm

x when SL < 0 < SR

∂xU∗
R when SR ≤ 0

(3.15)

with αm
x ≡ lm

x ·
[

∂xU∗
R −∂xU∗

L

]

.

In the above equation, the eigenvalues λ m
x , m = 1,2,3, . . .M of the left eigenvectors lm

x , m =
1,2,3, . . .M and the right eigenvectors rm

x , m = 1,2,3, . . .M are obtained from the characteristic

matrix ÃAA . In Equation (3.15) mx is defined to be the unique wave for which we have λ mx
x <

0 < λ mx+1
x . This completes our description of (∂xU∗). [We also point out that the omission of a

factor of half in front of the eigenvectors in Equation (2.19) of [62] is indeed an error, and this

paper fixes the deficiency in the form of an erratum to that prior paper.]

Analogous to the discussion in the previous paragraph, the longitudinal (i.e. y-directional)

gradients of the strongly-interacting state also satisfy the linear system

∂t(∂yU∗)+ B̃BB∂y(∂yU∗) = 0, (3.16)

with the initial conditions:

∂yU∗|
t=0

= ∂yU∗
D if y < 0

∂yU∗|
t=0

= ∂yU∗
U if y > 0.

As before, we use the Titarev-Toro-style linearization. Because the characteristic matrix is con-

stant, the solution of the linear system is easily found. Within the context of the linearization in

Equation (3.16), we obtain the solution

∂yU∗ =



























∂yU∗
D when SD ≥ 0

1
2

[

∂yU∗
D +∂yU∗

U

]

+ 1
2

my

∑
m=1

αm
y rm

y − 1

2

M

∑
m=my+1

αm
y rm

y when SD < 0 < SU

∂yU∗
U when SU ≤ 0

(3.17)

with αm
y ≡ lm

y ·
[

∂yU∗
U −∂yU∗

D

]

.

In the above equation, the eigenvalues λ m
y , m = 1,2,3, . . .M the left eigenvectors lm

y , m =
1,2,3, . . .M and the right eigenvectors rm

y , m = 1,2,3, . . .M are obtained from the character-

istic matrix B̃BB . In Equation (3.17) my is defined to be the unique wave for which we have

λ
my
y < 0 < λ

my+1
y . This completes our description of (∂yU∗).

For CED, the eigenvalues and orthonormal eigenvectors have been documented in [15]. Two

of the waves in this system become non-evolutionary because they correspond to the constraints.
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The case where the permittivity and permeability are diagonal is very important. In that case,

we give explicit expressions for (∂xU∗) and (∂yU∗). For (∂xU∗), we have

∂xU∗ =
1

2

(

∂xU∗
L +∂xU∗

R

)

+
1

2







































0

−
√

µ̃zz

ε̃yy

(

(∂xU∗
R)6 − (∂xU∗

L)6

)

√

µ̃yy

ε̃zz

(

(∂xU∗
R)5 − (∂xU∗

L)5

)

0
√

ε̃zz

µ̃yy

(

(∂xU∗
R)3 − (∂xU∗

L)3

)

−
√

ε̃yy

µ̃zz

(

(∂xU∗
R)2 − (∂xU∗

L)2

)







































. (3.18)

In the above equation, (∂xU∗
(·))i denotes the i-the component of the corresponding vector.

∂yU∗ =
1

2

(

∂yU∗
D +∂yU∗

U

)

+
1

2



































√

µ̃zz

ε̃xx

(

(∂yU∗
U)6 − (∂yU∗

D)6

)

0

−
√

µ̃xx

ε̃zz

(

(∂yU∗
U)4 − (∂yU∗

D)4

)

−
√

ε̃zz

µ̃xx

(

(∂yU∗
U)3 − (∂yU∗

D)3

)

0
√

ε̃xx

µ̃zz

(

(∂xU∗
U)1 − (∂xU∗

D)1

)



































. (3.19)

The above two equations show us how easy it is to obtain the gradients in the strongly-interacting

state.

3.3 A GRP solver without any source term

In its most rudimentary form, a multidimensional GRP solver is used as follows. We hand in

the four states and their gradients as inputs to the multidimensional GRP at time tn. The GRP

in turn produces the strongly-interacting state U∗ and its gradients ∂xU∗
U , ∂yU∗

U and ∂zU
∗
U at

each tn. However, a GRP solver should enable us to take a temporally second order accurate

time update to a time tn+1 = tn +∆t in one call to the GRP solver. As a result, we want the

time-centered solution at a time of tn + ∆t/2. This is obtained by a Lax-Wendroff-like procedure

as follows:

U∗,1/2 = U∗− ∆t

2

[

ÃAA(∂xU∗)+ B̃BB(∂yU∗)+C̃CC(∂zU
∗)

]

. (3.20)
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With U∗,1/2 in hand, we can easily obtain time-centered electric and magnetic fields at the edges

of the mesh. This enables us to find the electric field and magnetic field components at the edges

of the mesh with the result that Equation (2.11) then be used to make a single-step, second order

in time update.

3.4 A GRP solver for linear systems with stiff linear source

The output from the GRP solver will be a state U∗,1/2 updated to a time tn+1/2 at the edges of the

mesh, as discussed in the previous sub-section. This state has to be at least first order accurate

in time for the overall time update in Equation (2.11) to be second order accurate in time. Now

let us consider the inclusion of the source term in Equation (3.2). We can write the update that

is analogous to Equation (3.20), but this time we write it formally so that the effect of the source

term is included at least up to first order of accuracy. We therefore write

U∗,1/2 = g(∆t Σ̃ΣΣ)



U∗− ∆t

2

[

ÃAA(∂xU∗)+ B̃BB(∂yU∗)+C̃CC(∂zU
∗)

]



. (3.21)

Here g(∆t Σ̃ΣΣ) is a matrix function that depends only on the matrix ∆t Σ̃ΣΣ because the source terms

are linear. The matrix function can consist of any reasonable approximation of e−(
∆t
2

Σ̃ΣΣ). In

the next paragraph, we will examine the concept of L-stability in CED. We will then special-

ize g(∆t Σ̃ΣΣ) to ensure L-stability so that the overall timestep has this very beneficial stability

property.

The update in Equation (2.11) can be formally written as

Un+1 = Un −∆t Σ̃ΣΣ U∗,1/2 −∆tR(U∗,1/2), (3.22)

where U∗,1/2, ∆t Σ̃ΣΣ U∗,1/2 and R(U∗,1/2) represent the output state from the multidimensional GRP

updated to a time tn + ∆t/2 at the edges of the mesh, the source terms and a discrete represen-

tation of the curl type operator in Equation (2.11) respectively. In fairness, the facial currents

in Equation (2.11) are obtained by averaging the currents provided at the edges of the mesh by

the multidimensional GRP. However, that point of detail does not affect the following analysis.

The demonstration of L-stability does not rely on the form of the curl-type terms, and so we will

ignore the presence of the curl-type terms for the rest of this formal demonstration of L-stability.

In other words, to demonstrate L-stability, we will ignore terms with any spatial gradients and

focus only on the source terms. When all spatial gradients are set to zero, we have U∗ = Un.

Ignoring all spatial gradients, Equations (3.21) and (3.22) give us

Un+1 =

[

I−∆t Σ̃ΣΣ g(∆t Σ̃ΣΣ)

]

Un = G(Σ̃∆t)Un, (3.23)

where G(·) is the overall amplification factor of the scheme.

The effect of finite conductivity in Maxwell’s equations is such that, if the spatial gradients

do not act, and if the entire system is governed by non-zero conductivity, then the end result after
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a significantly long time interval should be a zero electric displacement and a zero magnetic

induction. In other words, as ∆t Σ̃ΣΣ → ∞, we want

[

I−∆t Σ̃ΣΣ g(∆t Σ̃ΣΣ)

]

→ 0. This is a physics-

based interpretation of L-stability. The matrix function g(∆t Σ̃ΣΣ) that we choose should reflect

that fact. Notice that Σ̃ΣΣ is either a non-negative diagonal matrix, or it can be diagonalized into

such a form via a similarity transformation. As a result, we can define χ ≡ ∆t Σ̃ΣΣ and simplify

our analysis by treating Σ̃ΣΣ as a scalar. L-stability is therefore equivalent to demanding that

lim
χ→∞

χg(χ) = 1. (3.24)

In the next three paragraphs we explore different reasonable forms for g(χ) so as to finally obtain

an L-stable formulation. Figure 5 shows the overall amplification factor G(χ) = 1− χg(χ) for

different choices.

Let us first examine the exact solution operator of the stiff source term. In that case, and

with all gradients set to zero, for Equation (3.21) we obtain the following:

U∗,1/2 = e−(∆t/2 Σ̃ΣΣ)Un with g(χ)≡ e−
χ/2. (3.25)

For this choice, we have

lim
χ→∞

χg(χ) = lim
χ→∞

χe−
χ/2 = 0. (3.26)

So we see that the exact solution operator of the stiff source term does not satisfy the L-stability

criteria (3.24) and as a result the overall scheme is not L-stable. We might think that the exact

evolution operator for the source term should be an ideal choice, but this is not the case when

we consider the overall scheme.

Let us next examine the backward Euler solution. In that case, and with all gradients set to

zero, we have the following form for Equation (3.21)

U∗,1/2 =

[

I+
∆t

2
Σ̃ΣΣ

]−1

Un with g(χ)≡ 1

1+ χ/2
. (3.27)

For this choice, we have

lim
χ→∞

χg(χ) = lim
χ→∞

χ

1+ χ/2
= 2. (3.28)

Therefore, we see that the overall amplification factor of the scheme with backward Euler

time-stepping lim
χ→∞

G(χ) = lim
χ→∞

(1−χg(χ)) =−1.

While the exact and backward Euler solution are not L-stable, the two options begin to hint

towards an optimal choice. Since both the exact and the backward Euler solution would give us

an overall scheme that is second order accurate in time, an arithmetic average of the two would

also give us a second order accuracy in time. If we take the average of these two options, we

obtain the following form for Equation (3.21)
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Figure 5: Amplification factor as a function of χ = Σ̃ΣΣ∆t . We show that an exact solution as

well as the backward Euler solution do not result in an overall time update strategy that has the

L-stability property. However, the arithmetic average of the two solutions leads to an overall

update strategy that is indeed L-stable. The exact solution is also shown.
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U∗,1/2 =
1

2

[

e
−(

∆t

2
Σ̃ΣΣ)
+

(

I+
∆t

2
Σ̃ΣΣ

)−1][

U∗− ∆t

2

(

ÃAA(∂xU∗)+ B̃BB(∂yU∗)+C̃CC(∂zU
∗)

)]

. (3.29)

Now if we set all the gradients to zero, we obtain

U∗,1/2 =
1

2

[

e−(∆t/2 Σ̃ΣΣ)+

(

I+
∆t

2
Σ̃ΣΣ

)−1]

Un, (3.30)

and thus

g(χ) =
1

2

(

e
−(

χ

2
)
+

1

1+ χ/2

)

. (3.31)

For this choice we have

lim
χ→∞

χg(χ) = lim
χ→∞

χ

2

(

e
−(

χ

2
)
+

1

1+ χ/2

)

= 1. (3.32)

Therefore, we see that we have found an L-stable scheme and Equation (3.29) gives us an ex-

pression of the final, successful choice of an overall scheme.

4 Pointwise strategy for implementation

The following steps will result in a one-step, GRP-based, second order accurate in space and time

FVTD scheme for CED which preserves the global constraints and is L-stable in the presence of

stiff linear source terms.

1. The primal variables of the scheme are facially-averaged normal components of the elec-

tric displacement vector field and the magnetic induction vector field, as shown in Fig-

ure 1. These components give us a second order accurate reconstruction of electric dis-

placement vector field and the magnetic induction vector fields following Section III of

[15].

2. Focus on each edge center of a Cartesian mesh. Consider the four zones that abut this edge.

Use the reconstructed fields to obtain the four input states to the multidimensional GRP.

Because the reconstruction from the previous step also enables us to obtain the gradients

in all directions from those four states, we also provide these gradients as inputs to the

GRP.

3. Use Equation (3.5) to obtain SR, SL, SU , SD. This enables us to identify the multidimen-

sional wave model, shown in the left panel of Figure 3.

4. Use Equations (3.6), (3.7) and (3.8) to obtain U∗
U and its gradients in the y- and z-directions.

Do analogously for U∗
D.
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5. Use Equations (3.9), (3.10) and (3.11) to obtain U∗
R and its gradients in the x- and z-

directions. Do analogously for U∗
L.

6. Use Equations (3.12) and (3.13) to obtain the strongly-interacting state U∗ and its gradient

in the z-direction.

7. Use Equations (3.18) and (3.19) to obtain the gradients of the strongly-interacting state

in the x and y-directions. Please note that Equations (3.18) and (3.19) are just specialized

forms of Equations (3.15) and (3.17) respectively.

8. If there are no source terms, use Equation (3.20). If source terms are present, use Equa-

tion (3.29). This gives us the time-centered states at the edges of the mesh that can be

used to construct the curl-type operators in Equation (2.11).

9. If sources are present, obtain the facial current densities by averaging the edge-centered

values of the same. This gives us an L-stable treatment of the stiff source terms.

10. Make the update in Equation (2.11). This completes our description of a spatially and

temporally second order accurate, globally constraint-preserving, FVTD time update.

5 Accuracy analysis

5.1 Propagation of a plane electromagnetic wave in two dimensions

In this test problem, we study the propagation of a plane electromagnetic wave through vac-

uum along the north-east diagonal direction of a two dimensional Cartesian domain spanning

[−0.5,0.5]× [−0.5,0.5] m2. For a detailed description of the problem set up and the electro-

magnetic field initialization, the readers are referred to [14] for three dimensional version of this

test problem and [15] for the two dimensional version of this test problem. Since the analytical

solution is known at any space and time, this test problem is very suitable for accuracy analysis.

We use a CFL of 0.45 and enforce a periodic boundary condition for this problem. The simula-

tion has been run till a time of 3.5×10−9 s second and a uniform mesh has been used in all the

runs presented here. Table 1 shows the accuracy analysis for this test problem. We can see the

algorithm meets it designed accuracy for this problem.

5.2 Compact Gaussian electromagnetic pulse incident on a refractive disk

In this two dimensional test problem, we study the propagation of a compact Gaussian electro-

magnetic pulse that is incident on a refractive disk of refractive index 3.0. The simulation has

been performed on a computational domain spanning [−7.0,7.0]× [−7.0,7.0] m2. The refrac-

tive disk of radius 0.75 m is placed at the center of the computational domain. More details

about this problem set up and initialization of the compact Gaussian pulse can be found in [15].

This simulation has been run with a CFL of 0.45 and continuative boundary condition is

enforced for this problem. We stop this simulation at a final time of 2.33×10−8 s. For the simu-

lations presented here, we use a uniform mesh with zones ranging from 120×120 to 960×960.
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Nx ×Ny ‖Dh
y −Dy‖L1 Ord ‖Dh

y −Dy‖L∞ Ord

16×16 9.8208e-05 — 1.5146e-04 —

32×32 2.2130e-05 2.15 3.4776e-05 2.12

64×64 5.5153e-06 2.00 8.6592e-06 2.01

128×128 1.3850e-06 1.99 2.1753e-06 1.99

‖Bh
z −Bz‖L1 Ord ‖Bh

z −Bz‖L∞ Ord

16×16 4.9235e-02 — 7.8128e-02 —

32×32 1.1492e-02 2.10 1.8000e-02 2.12

64×64 2.8693e-03 2.00 4.5064e-03 2.00

128×128 7.2069e-04 1.99 1.1320e-03 1.99

Table 1: Accuracy analysis for the second order GRP-WENO scheme for the propagation of

an electromagnetic wave in vacuum. A CFL of 0.45 was used. The errors and accuracy in the

y-component of the electric displacement vector and z-component of the magnetic induction are

shown.

Since the problem has no analytic solution, we use a 1920×1920 mesh solution as the reference

solution for computing the L1 and L∞ errors. Table 2 shows the result of the accuracy analysis

for this problem. The results show that, even for this problem, our algorithm meets its design

accuracy.

6 Test problems

6.1 Refraction of a compact electromagnetic beam by a dielectric slab

In this test problem, we study the refraction of a compact electromagnetic beam impinging on

a dielectric slab with a permittivity 2.25ε0 where ε0 is the permittivity of vacuum. Detailed

description about this problem set up and the initialization of the electromagnetic beam can be

found in [15].

We perform this simulation on a two dimensional Cartesian domain spanning [−5.0,8.0]×
[−2.5,7.0] µm2 using a uniform mesh with 1300×950 zones. We use a CFL of 0.45 and stop

this simulation at a time of 4.0×10−14 s. The result of the simulation is shown in Figure 6. The

top and bottom rows of Figure 6 shows Bz, Dx, Dy (from left to right) at the initial and final time

respectively. The solid vertical black line indicates the interface of the vacuum and the dielectric

slab. We have also plotted inclined solid black line to show the angles of incidence, refraction

and reflection. These lines are over-plotted with the field components to guide our eye. Since the

angle of incidence is 45° for this case, according to Snell’s law, the angle of refraction is 28.12°.

We clearly see that our simulation has reproduced the correct value of angle of refraction.
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Nx ×Ny ‖Dh
y −Dy‖L1 Ord ‖Dh

y −Dy‖L∞ Ord

120×120 4.5549e-05 — 1.7269e-02 —

240×240 2.8758e-05 0.66 1.7414e-02 -0.01

480×480 1.1046e-05 1.38 6.3582e-03 1.45

960×960 2.3549e-06 2.23 1.2758e-03 2.32

‖Bh
z −Bz‖L1 Ord ‖Bh

z −Bz‖L∞ Ord

120×120 1.8746e-02 — 2.7283e+00 —

240×240 1.0416e-02 0.85 2.9031e+00 -0.09

480×480 4.1051e-03 1.34 9.6348e-01 1.59

960×960 9.4015e-04 2.13 1.8530e-01 2.38

Table 2: Convergence of error for the second order GRP-WENO scheme for the propagation of

a compact Gaussian electromagnetic pulse that is incident on a refractive disk. A CFL of 0.45

was used. The errors and accuracy in the y-component of the electric displacement vector and

z-component of the magnetic induction are shown.
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Figure 6: Refraction of a compact electromagnetic beam by a dielectric slab on a mesh of

1300×950 cells. The vertical black line indicates the surface of the dielectric slab. The inclined

solid black lines demarcate the angle of incidence, the angle of refraction and the angle of

reflection. Top row and bottom row shows Bz, Dx, and Dy at the initial time and at final time

4.0×10−14 s respectively.
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Figure 7: Total internal reflection of a compact electromagnetic beam by a dielectric slab on

a mesh of 700×850 cells: The vertical black line indicates the surface of the dielectric slab.

The inclined solid black lines demarcate the angle of incidence and the angle of reflection. Top

row and bottom row shows Bz, Dx, and Dy at the initial time and at final time 5.0×10−14 s

respectively.
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6.2 Total internal reflection of a compact electromagnetic beam by a dielectric

slab

In this test problem, we study the total internal reflection of a compact electromagnetic beam

when it is incident on the interface separating a dielectric disk of permittivity 4ε0 and vacuum

at an angle of 45° which is more than the critical angle 30° for such system. For a detailed

description of the problem set up, readers are referred to [15]. We perform this simulation on

a rectangular xy-domain using a uniform mesh with 700×850 zones. We use a CFL of 0.45

for this simulation run and stop the simulation at a final time of 5.0×10−14 s. The top and

bottom rows of Figure 7 show the initial and final configuration of Bz, Dx, Dy (from left to

right) respectively. The solid vertical black line identifies the interface of the dielectric slab and

vacuum. The inclined solid black lines are over-plotted on the field components to guide our

eye. The result clearly shows that the incident beam has suffered total internal reflection.

6.3 Compact electromagnetic beam impinging on a conducting slab

This test problem is designed to demonstrate the capability of the present algorithm to handle

stiff source term. In this test problem, we study the reflection of a compact electromagnetic

beam impinging on a slab made up of copper having a conductivity of 5.9×107 Sm−1. The

problem set up is described in detail in [15].

We perform this simulation on a rectangular xy-domain using a uniform mesh with

1500×4000 zones. For this simulation, we use a CFL of 0.40 and stop the simulation at a

time of 1.83×10−7 s. The top and bottom rows of Figure 8 show the initial and final config-

uration of Bz, Dx, Dy respectively. The solid vertical black line represents the surface of the

conducting slab. We can notice the development of interference pattern between the incident

wave and the reflected wave close to the surface of the conducting slab.

6.4 Decay of a sinusoidal wave inside a conductor

Due to the finite skin depth of a conductor, a fraction of the incident wave penetrates it and

decays inside it. However, for the meshes used in the previous test problem, we are unable to

resolve the skin depth of the copper. Therefore, in this test problem, the simulation set up is

designed in a way so that we can resolve the skin depth and study the decay of a sinusoidal

wave. The details of the set up and the initialization of the electromagnetic field can be found in

[15].

Here, we show results of two one dimensional simulations. In one simulation, we study

the decay of the sinusoidal wave inside amorphous carbon having a conductivity of σ =
2.0×103 Sm−1 and in the other, we study the same inside copper. For both the simulations,

we use a one dimensional domain spanning [0,10δ ] where δ represents the skin depth of the

conductor and a uniform mesh with 100 zones. For carbon, we initialize a sinusoidal wave with

frequency ν = 1.679×1013 Hz, which gives δ = 3.44×10−6 m. We use a CFL of 0.90 for this

run and stop this simulation at a time of 4.76×10−13 s. For copper, we initialize a sinusoidal

wave with frequency ν = 1.0×1013 Hz, which gives δ = 2.06×10−8 m. We use a CFL of 0.75

for this run and stop this simulation at a time of 4.0×10−13 s. Solid black lines in top left and
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Figure 8: Compact electromagnetic beam impinging on a conducting slab. Simulation were

performed on 1500×4000 cells. The conductor is located at x = 0 in the figure and is shown by

the vertical black line. Top row: Bz, Dx, and Dy at the initial time. Bottom row: Bz, Dx, and Dy

at the final time 1.83×10−7 s when the beam has reflected off the surface of the conductor.

27



-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5e-06  1e-05 1.5e-05 2e-05 2.5e-05 3e-05

B
z

x (m)

Bz
Envelope

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5e-08  1e-07  1.5e-07  2e-07

B
z

x (m)

Bz
Envelope

 0.01

 0.1

 1

 0  2e-06  4e-06  6e-06  8e-06  1e-05 1.2e-05

x (m)

e
-x/δ

Decaying envelope

 0.001

 0.01

 0.1

 1

 0  2e-08  4e-08  6e-08  8e-08  1e-07

x (m)

e
-x/δ

Decaying envelope

Figure 9: The top left panel and right panel show the radial variations of Bz (black lines) and

the decaying envelopes (red lines) inside carbon and copper, respectively. The bottom left, and

the bottom right panel present the structure of the envelopes (red lines) and the theoretical plots

on a semi-log scale for carbon and copper, respectively.
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top right panels of Figure 9 show the variation of Bz with radial distance inside the carbon and

copper, respectively. The solid red lines represent the numerically evaluated decaying envelopes.

In bottom left and bottom right panels of Figure 9, we compare the numerically evaluated decay-

ing envelopes (red crosses) with analytically obtained envelopes (blue solid line) on a semi-log

scale for carbon and copper, respectively. We can see that our numerical results match very well

with the analytical results.

6.5 Long-distance or long-time propagation of electromagnetic radiation

Long-time or long-distance wave propagation is crucial for many problems in electrodynamics.

Therefore, it is highly desirable to devise CED schemes with minimal dispersive errors. This test

problem is designed to demonstrate the numerical dispersion behavior of our numerical scheme.

It is also compared with FDTD to prove its superior numerical dispersion behavior over the

FDTD scheme. The setup of the problem is analogous to the similar test problem in Section 5.8

of [16].

To replicate the long-time and long-distance propagation of electromagnetic plane waves,

we make electromagnetic plane waves propagate in a small computational domain with periodic

boundary conditions in multiple cycles. We choose a computational domain that spans [− r
2
, r

2
]×

[− r
2
, r

2
] in the xy-plane with r = 6 divided into a 180×180 meshes with uniform mesh size and

periodic boundary conditions. The exact expression for the electric flux density and the magnetic

flux intensity vector fields are given as follows:

DDD = c ε0

(

−ny cos(φ)êx + nx cos(φ)êy

)

, BBB = cos(φ)êz

where φ = 2π
ny
(nxx+ nyy− ct) and n̂nn = nxêx + nyêy is the direction of propagation of the plane

wave.

As it is well known that wave propagation along the mesh lines or 45° is simpler to replicate,

we test the dispersion behaviour of our scheme by choosing the direction of wave propagation

along n̂nn = ( 1√
r2+1

, r√
r2+1

) which implies that the plane wave are made to propagate at angle

tan−1(1
r
) = tan−1(1

6
) = 9.462° with respect to the y-axis.

Simulation was performed until 4.05×10−7 s with a CFL number of 0.45. The final time

corresponds to 20 cycles on the periodic mesh, equivalent to propagating the electromagnetic

wave over 3600 zones of a uniform mesh.

The left panel of Figure 10 shows the variation of Bz normalized by the corresponding ampli-

tude of the sinusoid as a function of x along y = 0 at the final time. The right panel of Figure 10

depicts the same, however, as a function of y along x = 0. In Figure 10, results obtained using

multidimensional GRP, FDTD are compared with analytical solutions, and we can observe that

analytical results and multidimensional GRP-computed results are close to each other whereas

FDTD-computed results lagged in the left relative to them by 1 m distance. Similar result has

also been reported in [16].

29



Figure 10: Long-time propagation of electromagnetic radiation. Bz normalized by the amplitude

for multidimensional GRP, FDTD and analytical solution at the final time. Left panel shows the

variation along the x-axis at y = 0, while the right panel shows the variation along the y-axis at

x = 0.

7 Conclusions

In this paper, we have designed an approximate, multidimensional generalized Riemann problem

(GRP) solver. The multidimensional Riemann solver takes the four states that come together at

an edge as input states and provides the resolved state (traditionally called a strongly-interacting

state) and multidimensional fluxes as output. The output can then be used to extend the strongly-

interacting state and its fluxes in time. The edge-based arrangement of electric and magnetic

fields for CED in Figure 1 shows that the multidimensional GRP solver provides exactly the de-

sired edge-based data at the very location this data is needed. This highlights the special utility

of the multidimensional GRP solver for CED and other involution-constrained applications. In

this paper, we have designed such an approximate, multidimensional GRP solver for linear hy-

perbolic systems with stiff, linear source terms. As a result, a one-step update that is temporally

second order accurate is achieved.

Our formulation produces an overall constraint-preserving time-stepping strategy based on

the GRP that is provably L-stable in the presence of stiff source terms. Our multidimensional

GRP formulation, while specialized for CED, is generally applicable to any linear hyperbolic

system with stiff, linear source terms.

The multidimensional GRP presented here is intended to be a building block for low dis-

persion, low dissipation higher order schemes for CED. It could also find utility in aeroacous-

tics. We also recognize that multidimensional Riemann solvers have found great utility as nodal

solvers in Arbitrary Lagrangian Eulerian (ALE) schemes [68, 69]. The availability of multidi-

mensional GRP solvers is expected to greatly simplify the design of higher order ALE schemes

because the GRP provides a more accurate trajectory of the strongly-interacting state at each

node. Likewise, the Taylor series-based schemes that result from the multidimensional GRP

indeed reduce the number of reconstruction stages in ALE schemes. In subsequent papers we
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will pursue such innovations as well as further develop the field of CED.
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