
ar
X

iv
:1

70
7.

09
55

6v
3 

 [
m

at
h.

C
O

] 
 8

 A
pr

 2
02

0

New bounds on the Ramsey number r(Im, Ln)

Ferdinand Ihringer1

Ghent University. Department of Mathematics: Analysis, Logic, and Discrete

Mathematics.

Deepak Rajendraprasad

Indian Institute of Technology Palakkad

Thilo Weinert2

Universität Wien

Institut fr Mathematik
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Abstract

We investigate the Ramsey number r(Im, Ln) which is the smallest natural
number k such that every oriented graph on k vertices contains either an in-
dependent set of size m or a transitive tournament on n vertices. Continuing
research by Larson and Mitchell and earlier work by Bermond we estab-
lish two new upper bounds for r(Im, L3) which are paramount in proving
r(I4, L3) = 15 < 23 = r(I5, L3) and r(Im, L3) = Θ(m2/ logm), respectively.
We furthermore elaborate on implications of the latter on upper bounds for
r(Im, Ln).
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1. Introduction

In this paper the minimal number ℓ for which every oriented graph3 of
order ℓ either contains an independent set of cardinality m or a transitive
induced subtournament of order n is studied. This minimal number ℓ is
denoted by r(Im, Ln).

The case m = 2 received a decent amount of attention, it is known that
r(I2, L3) = 4, c.f. [9], that r(I2, L4) = 8, c.f. [7] and that r(I2, L5) = 14 and
r(I2, L6) = 28, c.f. [18]. The general asymptotic behaviour of r(I2, Ln) was
studied as well, Stearns in [21] showed that r(I2, Ln) 6 2n−1, this was later
improved to r(I2, Ln) 6 7 · 2n−4 for n > 4 by Reid and Parker in [18] and to
r(I2, Ln) 6 55 · 2n−7 for n > 6 by Sánchez-Flores in [19]. Erdős and Moser
established r(I2, Ln) > 2(n−1)/2 in [7]. This case was furthermore studied in
the papers [14, 13] and [20].

By contrast, cases in which m > 2 were only studied in considerably fewer
papers. In [5], Bermond proved r(I3, L3) = 9 mainly by providing an example
establishing the lower bound. The numbers r(Im, Ln) for m > 2 were last
revisited two decades ago by Larson and Mitchell [12]. There they proved
r(Im, L3) 6 m2 using a degree argument and showed r(I4, L3) > 13. This
left open three possibilities for the number r(I4, L3), the arguably easiest case
among the hitherto open ones.

There seems to be a noticable gap between the knowledge about un-
directed Ramsey numbers r(Im, Kn) and that on oriented Ramsey numbers
r(Im, Ln) and hereby we are attempting a step in closing it. The numbers
r(Im, K3) are known for 1 < m < 10, they are 3, 6, 9, 14, 18, 23, 28, 36. The
last of these values was established in 1982 by Grinstead and Roberts in [10].
More information on small Ramsey numbers can be found in Radziszowski’s
survey [17]. Moreover since Kim in [11] established a lower bound of appro-
priate order of magnitude, we know that r(Im, K3) = Θ(m2/ logm).

Even though we are later going to establish an asymptotically better

3We use the adjective “oriented” over “directed” as the graphs under discussion contain
at most one edge between any two vertices. Likewise, the graphs are all loopless.
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Figure 1: Bermond’s {I3, L3}-free graph on 8 vertices.

third bound, in Section 3 we provide an upper bound of m2 − m + 3 for
r(Im, L3) which is better than both the aforementioned asymptotically better
bound and the Larson-Mitchell-bound for m 6 2508. More importantly, it
allows for the determination of r(Im, L3) for m ∈ {4, 5} by giving the correct
values. Subsequently, in Section 4, we construct oriented graphs witnessing
r(I4, L3) > 14 and r(I5, L3) > 22. Thereby we prove the following.

Theorem 1.1. r(I4, L3) = 15 and r(I5, L3) = 23.

Since any orientation of an {Im, K3}-free graph is {Im, L3}-free, r(Im, L3) ≥
r(Im, K3). Moreover, since every orientation of a graph which contains a K4

will contain an L3, r(Im, L3) ≤ r(Im, K4). In Section 5, we use a result of
Alon [3] to show that r(Im, L3) behaves more like r(Im, K3). That is we show
the following.

Theorem 1.2. r(Im, L3) = Θ(m2/ logm).

Then we follow an argument of Ajtai, Komlós, and Szemerédi to give, for
each n > 3, asymptotic upper bounds on r(Im, Ln) of the same order as the
best known upper bounds for r(Im, Kn).

More concretely, we extend the result above to the following:

3



Theorem 1.3. For each natural number m and each natural number n > 3,
there exists a universal constant Cn such that r(Im, Ln) 6 Cnm

n−1/(logm)n−2.

Finally—in an appendix—we provide a formula which gives the best
known upper bounds for small values of m and n.

The numbers r(Im, Ln) are of interest also due to their connection to
ordinal Ramsey theory, c.f. [24, Chapter 7] and [1, Chapter 2]. In particular,
[9, Theorem 25] amounts to the following:

Theorem 1.4 (Erdős and Rado [9]). r(ωm, n) = ωr(Im, Ln) for all natural
numbers m and n.

In [8] Erdős and Rado showed that for any infinite initial ordinal κ and any
natural numbers m and n there is a natural number ℓ such that r(κm, n) 6
κℓ. They conjectured that ℓ never depends on κ. In [4] Baumgartner settled
this conjecture affirmatively.

Theorem 1.5 (Baumgartner [4]). r(κm, n) = κr(Im, Ln) for all infinite
initial ordinals κ.

2. Preliminaries

Let v be a vertex of an oriented graph D = (V,A). We denote the
in-neighbourhood of v by N−(v) and the out-neighbourhood of v by N+(v).
Formally, we have N−(v) = {w ∈ V : (w, v) ∈ A} and N+(v) = {w ∈ V :
(v, w) ∈ A}. We denote the vertices non-adjacent to v by I(v), formally
we have I(v) = V \ ({v} ∪ N−(v) ∪ N+(v)). We denote |N−(v)| by d−(v)
and |N+(v)| by d+(v). We call d−(v) the in-degree of v and d+(v) its out-
degree. Whenever we refer to the degree of v simpliciter, we mean the sum
d−(v) + d+(v) of its in- and out-degrees. An oriented graph is n-regular,
whenever d−(v) = d+(v) = n for all its vertices v.

Lemma 2.1. Let m and n both be natural numbers, let D = (V,A) be an
{Im, Ln}-free oriented graph and let v ∈ V . Then the following holds:

1. The induced subgraphs on N−(v) and N+(v) are {Im, Ln−1}-free.
2. The induced subgraph on I(v) is {Im−1, Ln}-free.

Proof. To show the first assertion suppose towards a contradiction thatN−(v)
contains a set of vertices T such that the induced subgraph on T is the trans-
itive tournament of size n − 1. Then {v} ∪ T is the transitive tournament
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of size n. This contradicts that D is Ln-free. For the induced subgraph on
N+(v) one may argue analogously.

To show the second assertion suppose towards a contradiction that I(v)
contains an independent set I of size m− 1. Then {v}∪ I is an independent
set of size m. This contradicts that D is Im-free.

This has the following consequences for the case n = 3.

Corollary 2.2. Let m be a natural number, let D = (V,A) be an {Im, L3}-
free oriented graph and let v ∈ V . Then N−(v) and N+(v) are independent
sets. Particularly, d−(v), d+(v) 6 m− 1.

We now provide a recursive upper bound for r(Im, Ln).

Lemma 2.3. We have r(Im+1, Ln+1) 6 2r(Im+1, Ln) + r(Im, Ln+1) − 1 for
all natural numbers m and n. Furthermore, if an {Im+1, In+1}-free oriented
graph D = (V,A) has order 2r(Im+1, Ln) + r(Im, Ln+1) − 2, then all v ∈ V
satisfy

1. d−(v) = d+(v) = r(Im+1, Ln)− 1 and

2. |I(v)| = r(Im, Ln+1)− 1.

Proof. Let D be an {Im+1, Ln+1}-free oriented graph. Let v ∈ D. By Lemma
2.1, N−(v) and N+(v) have at most size r(Im+1, Ln)− 1 each, and I(v) has
at most size r(Im, Ln+1)− 1. Hence,

|V | 6 |{v}|+ |N−(v)|+ |N+(v)|+ |I(v)|
6 1 + 2(r(Im+1, Ln)− 1) + r(Im, Ln+1)− 1

= 2r(Im+1, Ln) + r(Im, Ln+1)− 2.

This implies the assertion.

The following lemma goes back to Larson and Mitchell, c.f. [12]. It follows
from Corollary 2.2 in connection with Lemma 2.3. We will later improve on
it with Proposition 3.4.

Lemma 2.4 (Larson and Mitchell). r(Im, L3) 6 m2 for all natural numbers
m > 2.

A proof of the following lemma can be found in [21] so we do state, yet
not prove it.

Lemma 2.5. r(I2, Ln) 6 2n−1 for all natural numbers n > 2.
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3. Improving the Larson-Mitchell Upper Bound

In this section we improve Lemma 2.4 and show that r(Im, L3) 6 m2 −
m+3 for all m > 3. This upper bound turns out to be tight for m ∈ {3, 4, 5}.

If D = (V,A) is an oriented graph and B,C ⊂ V , let E(B,C) denote
the set of edges between vertices in B and vertices in C, irrespective of their
direction. Formally we have E(B,C) = A ∩ ((B × C) ∪ (C × B)).

For the following lemma and its proof, note that whenever we refer to a
triangle without specifying that it be transitive or cyclic, it may be either. In
particular, when we say that a subset S of vertices in D contains a triangle,
we mean the oriented subgraph ofD induced by S contains either a transitive
or a cyclic triangle.

Lemma 3.1. Up to isomorphism there is exactly one {I3, L3}-free oriented
graph D on eight vertices. It has the following properties:

1. D is 2-regular,

2. every triple of vertices of D contains at least one edge,

3. the non-neighbourhood of any vertex of D induces a triangle,

4. any set of 5 vertices in D either contains a triangle or the induced
underlying unoriented graph is isomorphic to C5,

5. any set of 6 vertices in D contains a triangle.

Proof. As r(I2, L3) = 4 and r(I3, L2) = 3, the bound in Lemma 2.3 is tight.
Hence, the oriented graph is 2-regular. The second and third assertion follow
from D being I3-free.

Let M be a set of five vertices of D. We assume that M does not contain
a triangle. We can ignore the orientation of the edges. Let x ∈ M . By part
3, |I(x) ∩M | 6 2. If |I(x) ∩M | 6 1, then |M ∩ (N+(x) ∪ N−(x))| > 3, so
part 2 implies the assertion. Hence, |I(x) ∩M | = 2 for all x ∈ M . Hence,
the induced underlying subgraph on M is isomorphic to a cycle of length 5.
This implies the fourth assertion. The fifth assertion follows similarly.

Now we show the uniqueness of D. W.l.o.g. the vertex set of D is
{0, 1, 2, 3, 4, 5, 6, 7}, where N+(0) = {2, 3}, N−(0) = {5, 6}, and I(0) =
{1, 4, 7}. As I(0) is {I2, L3}-free, w.l.o.g. we have the edges

(1, 4), (4, 7), and (7, 1)

in D. By definition, we have

(0, 2), (0, 3), (5, 0), and (6, 0)
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in D. As every vertex in D has degree 4,

|E(N+(0) ∪N−(0), I(0))| = 4|I(0)| − 2|E(I(0), I(0))| = 12− 6 = 6.

Hence,

2|E(N+(0), N−(0))| = 4 · 3− |E(N+(0) ∪N−(0), I(0))| = 6.

AsD is L3-free, the three edges in E(N+(0), N−(0)) go fromN+(0) toN−(0),
so w.l.o.g. we can assume that the edges

(3, 6), (2, 5), and (3, 5)

are in D. As 3 has in-degree 2, there is one edge from I(0) to 3, w.l.o.g.
that is (1, 3). As I(3) is {I2, L3}-free, the edges (7, 2) and (2, 4) are in D.
Similarly, I(2) is {I2, L3}-free, so (6, 1) is an edge of D. As the out- and
in-degrees of all vertices are 2, the edges (5, 7) and (4, 6) are in D. Now we
have given all 16 oriented edges of D without loss of generality.

The unique {I3, L3}-free oriented graph on eight vertices may be defined
on Z8 by setting both x 7→ x+ 1 and x 7→ x− 2, see Figure 1.

Lemma 3.2. An {I4, L3}-free oriented graph on fourteen vertices contains
at least 38 edges.

Proof. We show the statement by contradiction. Let D = (V,A) be a 14-
vertex {I4, L3}-free oriented graph with |A| < 42. By Corollary 2.2, every
vertex has in-degree and out-degree at most 3. Since |A| < 42, the sum of
in-degrees is less than 42 and hence there exists a vertex v with in-degree at
most 2. By Lemma 2.1, d−(v)+d+(v) > 14− r(I3, L3) = 5. Since d+(v) 6 3,
we have d−(v) = 2 and d+(v) = 3.

Since N+(v) is already an independent set of size 3, and D is I4-free, each
of the 8 vertices in I(v) is adjacent to at least one vertex of N+(v). Hence
|E(N+(v), I(v))| > 8.

Similarly, we get |E(N−(v), I(v))| > 5: Assume to the contrary that
|E(N−(v), I(v))| < 5. Let F denote the vertices in I(v) which are not in an
edge of E(N−(v), I(v)). As |I(v)| = 8, we have |F | > 4. As r(I2, L3) = 4,
we find an independent set F ′ of size 2 in F and thus F ′ ∪ N−(v) is an
independent set of size 4. This contradicts that D is I4-free.

7



By Lemma 3.1, |E(I(v), I(v))| = 16. Let y be the number of vertices
w ∈ I(v) with d−(w) + d+(w) = 6. Then

45 6 |E(N+(v), I(v))|+ |E(N−(v), I(v))|+ 2 · |E(I(v), I(v))|
= 6y + 5(8− y).

Hence, y > 5. This, together with the handshaking lemma, ensures that
there are at most 8 vertices u with d−(u) + d+(u) = 5. As all the vertices w
in D satisfy d−(w) + d+(w) ∈ {5, 6}, we have |A| > (8 · 5+ 6 · 6)/2 = 38.

One can improve the previous argument to show that there are at least
41 edges, but it is slightly more tedious and not needed in the following.

Lemma 3.3. Let m be a natural number and suppose that D = (V,A) is an
{Im, L3}-free oriented graph. Let v ∈ V with d−(v) = m− 1 and w ∈ V with
d+(w) = m− 1. Then

|E(N−(v), I(v))| > 2(|I(v)| −m+ 1)

and

|E(N+(w), I(w))| > 2(|I(w)| −m+ 1).

Proof. By Corollary 2.2, N−(v) is an independent set of size m− 1. Notice
that each x ∈ I(v) is adjacent to at least one vertex of N−(v) as otherwise
N−(v)∪{x} is an independent set of size m. We call x ∈ I(v) a private neigh-
bour (with respect to N−(v)) if x has exactly one neighbour in N−(v). We
claim that a vertex u ∈ N−(v) is adjacent to at most two private neighbours.

Suppose that u is adjacent to three private neighbours, call them x, y and
z. If x, y and z are all adjacent, then the induced subgraph on {u, x, y, z}
is an {I2, L3}-free graph. This contradicts r(I2, L3) = 4. If without loss
of generality x and y are not adjacent, then {x, y} ∪ N−(v) \ {u} is an
independent set of size m. This contradicts thats D is Im-free. This shows
our claim.

Hence, each u ∈ N−(v) is adjacent to at most two private neighbours
in I(v). Let P denote the set of private neighbours in I(v) (with respect to
N−(v)). Since every vertex in I(v) \P has at least two neighbours in N−(v)
and |P | 6 2|N−(v)| = 2d−(v), we have:

|E(N−(v), I(v))| >|P |+ 2(|I(v)| − |P |) = 2|I(v)| − |P |
>2(|I(v)| − d−(v)) = 2(|I(v)| −m+ 1).
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An analogous argument shows

|E(N+(w), I(w))| > 2(|I(w)| −m+ 1).

The assertion follows.

Proposition 3.4. If m is a natural number, where m > 2, then (1) every
{Im, L3}-free oriented graph on m2 −m+ 2 vertices has at least (m2 −m+
2)(2m− 3)/2 edges and that (2) r(Im, L3) 6 m2 −m+ 3.

Proof. The proposition will be established by induction onm. As there are no
{I2, L3}-free oriented graphs on four vertices, the statement of the proposition
is vacuously true in the casem = 2. By Lemmas 2.4 and 3.1(1) it holds in case
m = 3 as well. Henceforth we assume m > 3 and the truth of the proposition
for m. We show it holds for m + 1 as well. To this end, let D = (V,A) an
{Im+1, L3}-free graph with |V | > (m+ 1)2 − (m+ 1) + 2 = m2 +m+ 2.

Note that this induction is slightly twisted. First we use the induction
hypothesis on (2) for m to show (1) for m + 1. Then we use the induction
hypothesis on (1) and (2) for m to show (2) for m+ 1.

In order to show that there are no fewer edges in D than claimed, consider
that as D is {Im+1, L3}-free, by Lemma 2.3 the non-neighbourhood I(v) of
any vertex v ∈ V induces an {Im, L3}-free oriented subgraph Dv =

(

I(v), A ↾

(I(v)×I(v))
)

of D. By our induction hypothesis we have |I(v)| 6 m2−m+2
and hence d−(v) + d+(v) > (m2 +m+ 2)− 1− (m2 −m+2) = 2(m+1)− 3
for all v ∈ V . Hence the number of edges in D is at least

1

2

∑

v∈V

(

d−(v) + d+(v)
)

>
1

2

∑

v∈V

(

2(m+ 1)− 3
)

=
|V |

(

2(m+ 1)− 3
)

2
.

For |V | = m2 +m+ 2, this shows (1) for m+ 1.
It remains to show that |V | > m2+m+2 cannot occur. Assume towards

a contradiction that |V | = m2 + m + 3. As r(Im+1, L2) = m + 1 and, by
induction hypothesis, r(Im, L3) 6 m2 −m + 3, we have equality in Lemma
2.3. By Lemma 2.3, d−(v) = d+(v) = m and |I(v)| = m2 − m + 2 for all
v ∈ V .

Let us fix v. As d−(v) = d+(v) = m, we can apply Lemma 3.3 and obtain

|E(N−(v) ∪N+(v), I(v))| > 4(|I(v)| −m) = 4(m2 − 2m+ 2). (1)
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As d−(w) = d+(w) = m for w ∈ I(v), we have that

|E(N−(v) ∪N+(v), I(v))|+ 2|E(I(v), I(v))| (2)

= 2m · |I(v)| = 2m(m2 −m+ 2).

Now we will employ our knowledge about the degrees and the induction
hypothesis for the number of edges in an {Im, L3}-free oriented graph on
m2 − m + 2 vertices. We distinguish three cases (a), (b), and (c). Let
ℓ := |E(N−(v) ∪ N+(v), I(v))|. Case (a): If m = 3, then, by Lemma 3.1,
|E(I(v), I(v))| > 16. Then, by (2), ℓ 6 16. But, by (1), ℓ > 20. This is a
contradiction. Case (b): If m = 4, then by Lemma 3.2, |E(I(v), I(v))| > 38.
Then, by (2), ℓ 6 36. But, by (1), ℓ > 40. Again, this is a contradiction.
Case (c): If m > 4, then we have |E(I(v), I(v))| > (2m− 3)(m2 −m+ 2)/2
by the induction hypothesis. By (2),

ℓ = |E(N−(v) ∪N+(v), I(v))| 6 3m2 − 3m+ 6.

As m > 4, this contradicts (1).

4. Constructive Lower Bounds

Observation 4.1. r(I4, L3) = 15.

Proof. By Proposition 3.4, r(I4, L3) 6 15. The oriented {I4, L3}-free graph
in Figure 2 may be defined on Z14 by setting both x 7→ x+ 1 and x 7→ x− 2
for all x ∈ Z14 and moreover x 7→ x + 4 if x is even and x 7→ x − 6 if x is
odd.

We want to remark that there is no oriented {I4, L3}-free Cayley graph
on 14 vertices.

Observation 4.2. r(I5, L3) = 23.

Proof. By Proposition 3.4, r(I5, L3) 6 23. The oriented {I5, L3}-free graph
in Figure 3 may be defined on Z22 by setting both x 7→ x + 1, x 7→ x + 4,
x 7→ x− 5 and x 7→ x+ 10 for all x ∈ Z22.

Both observations together imply Theorem 1.1.
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Figure 2: An oriented graph showing r(I4, L3) > 14.

5. Probabilistic Upper Bounds

In this section, we use a result of Alon to show that r(Im, L3) is in
O(m2/ logm). This bound is better than the one in Proposition 3.4 for
large enough m. Moreover, this is tight upto multiplicative constants since
r(Im, L3) > r(Im, K3). Then we follow an upper bound argument of Ajtai,
Komlós and Szemerédi for r(Im, Kn) to obtain upper bounds of commensur-
ate order for r(Im, Ln).

Note that ld stands for logarithm dualis, the logarithm to base 2.

Proposition 5.1 ([3, Prop. 2.1]). Let G = (V,E) be a graph on v vertices
with maximum degree d > 1, in which the neighbourhood of any vertex is
r-colourable. Then

α(G) >
v ld d

160d ld(r + 1)
.

Corollary 5.2.

r(Im, L3) 6
508m2

ldm
for all natural numbers m > 2.
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Figure 3: An oriented graph showing r(I5, L3) > 22.
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Proof. Assume towards a contradiction that there are a natural number m
and an oriented graph D on v := 508m2/ ldm vertices with no transitive
triangle and no independent set of size m. Let G be the undirected graph
obtained from D by forgetting the directions of the edges. Let d denote the
maximal degree of a vertex in G. We distinguish two overlapping cases:

Firstly we assume d 6 253. Then, by Turán’s bound, we have

m >
v

d+ 1
=

508m2

(d+ 1) ldm
>

508m2

(253 + 1) ldm
=

508m2

254 ldm
=

2m2

ldm
.

This clearly implies ldm > 2m, so m > 22m, a contradiction.
Secondly we assume d > 3. Since d < 2m by Corollary 2.2 and ld(x)/x

is decreasing for x > e,

ld d

d
>

ld(2m)

2m
,

Note that the neighbourhood of any vertex x is 2-colourable since it consists
of the in- and out-neighbourhoods of x, both of which are independent sets
so by Proposition 5.1, we may conclude that

m > α(G) >
508m2

ldm
· ld(d)

160 · d ld 3 >
508m2

ldm
· ld(2m)

160 · 2m ld 3

=
508m(ld 2 + ldm)

320 ld 3 ldm
=

127m

80 ld 3
(1 +

1

ldm
).

It follows that 127 < 80 ld 3 < 126.8 which is a contradiction.

Due to Kim [11], r(Im, K3) > Θ(m2/ logm). Since r(Im, L3) > r(Im, K3),
this shows Theorem 1.2.

We follow an argument by Ajtai, Komlós, and Szemerédi for {Im, Kn}-free
graphs [2] to obtain another upper bound for {Im, Ln}-free graphs.

Following the proof of [2, Lemma 4], which is a standard application of
Chebyshev’s and Markov’s inequalities, we obtain the following lemma.

Lemma 5.3. Let D be an oriented graph with v vertices, e edges, h transitive
triangles, and average degree d. Let 0 < p < 1. Then there exists an induced
subgraph D′ of D with v′ vertices, e′ edges, h′ transitive triangles, and average
degree d′ satisfying

v′ > vp/2, e′ 6 3ep2 h′ 6 3hp3, d′ 6 6dp.

13



We also need the average version of Alon’s bound. The constant in the
bound can be easily verified from the proof there.

Theorem 5.4 ([3, Theorem 1.1]). Let G = (V,E) be a graph on v vertices
with average degree d > 1, in which the neighbourhood of any vertex is r-
colourable. Then

α(G) >
v ld(2d)

640d ld(r + 1)
.

Lemma 5.5. Let ε 6 1 be positive. If D is an oriented graph with v vertices,
average degree d ≥ 1, and h 6 vd2−ε transitive triangles, then

α(D) >
εv ld d

215d
.

Proof.

Let p =

√
15− 3

6d1−ε/2
.

By Lemma 5.3, we obtain an oriented graph D′ with v′ > vp/2 vertices,
average degree d′ 6 6dp = (

√
15− 3)dε/2, and h′ 6 3hp3 transitive triangles.

Since d2−εp2 = (
√
15− 3)2/62 = (4−

√
15)/6, we get

h′ 6 3hp3 6 3vd2−εp3 6
(

4−
√
15
) vp

2
6 (4−

√
15)v′.

Deleting one vertex from each of the transitive triangles in D′ gives us an
L3-free oriented graph D′′ on v′′ > (

√
15 − 3)v′ > (

√
15 − 3)vp/2 vertices.

So the neighbourhood of any vertex in D′′ is 2-colourable. If d′′ denotes the
average degree of D′′, then

d′′ 6
d′√

15− 3
6

6dp√
15− 3

= dε/2.

We distinguish two cases:
First we assume that d′′ 6 1959. Then by Caro-Wei, c.f. [6, 23], we get

α(D′′) >
v′′

d′′ + 1
>

v′′

1960
>

(
√
15− 3)vp

3920
=

(
√
15− 3)2v

23520d1−ε/2
=

6(4−
√
15)v

23520d1−ε/2

=
(4−

√
15)v

3920d1−ε/2
>

v

30864d1−ε/2
=

v
√
dε

24 · 1929d >
v ld dε

215d
=

εv ld d

215d
.
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The last inequality follows from ld(x)/
√
x having a global maximum of value

smaller than 2/(e ln 2), which is less than 211/1929.
Now we assume that d′′ > e. Then, as the function ld(x)/x is decreasing

above e and by Theorem 5.4,

α(D) > α(D′′) >
1

640 ld 3
v′′

ld d′′

d′′
>

1

640 ld 3

vp(
√
15− 3)

2

ld(dε/2)

dε/2

>
1

640 ld 3

v(
√
15− 3)

2

(
√
15− 3)

6d
ld(dε/2)

>
v(4−

√
15)ε ld d

295d ld 3
>

vε ld d

295d(4 +
√
15) ld 3

>
εv ld d

215d
.

Theorem 5.6. For all natural numbers m,n > 2,

r(Im, Ln) 6 217n · mn−1

(ldm)n−2
.

Proof. We prove the bound by induction on n. We already know that
r(Im, L2) 6 m and, by Corollary 5.2, r(Im, L3) 6 29 · m2

ldm
. Fix n > 4

and assume that the claim is true for n− 1 and n− 2.
Suppose that D is an Ln-free oriented graph on

v > 217n · mn−1

(ldm)n−2

vertices. We will argue that α(D) > m. Let ε = 7
8n−8

. Furthermore, let d and

d̄ denote the maximum and average degrees of the vertices in D, respectively.

Case 1.. d̄ 6 7. Then by Turán’s bound,

α(D) >
217nmn−1

(7 + 1)(ldm)n−2
>

217mn−1

8(ldm)n−2
>

214mn−1

(ldm)n−2
> 214m > m.

Case 2.. d̄ > 3 and the number of transitive triangles in D is at least v ·d2−ε.
The graph D contains at most vd/2 edges. By double counting there exists
an oriented edge e = (a, b) in D such that (a, b) lies in at least

vd2−ε

vd/2

15



transitive triangles of the form {(a, b), (b, v), (a, v)}. Let Ve denote the set of
vertices v such that {(a, b), (b, v), (a, v)} is a transitive triangle of D. Then
|Ve| > 2d1−ε.

If there is an oriented subgraph H isomorphic to Ln−2 in the subgraph
D′ induced on Ve, then the induced subgraph on {a, b}∪V (H) is isomorphic
to Ln. Hence, D

′ is {Im, Ln−2}-free. Hence,

2d1−ε 6 |Ve| < r(Im, Ln−2).

Hence,

d <

(

r(Im, Ln−2)

2

)
1

1−ε

<

(

217n−35 · mn−3

(ldm)n−4

)1+ 7

8n−15

= 217n−35+ 119n−245

8n−15 · mn−3+ 7n−21

8n−15

(ldm)n−4+ 7n−28

8n−15

< 217n−35+15 · mn−3+ 7

8

(ldm)n−4

= 217n−20 · mn− 17

8

(ldm)n−4
.

By Turán’s bound,

α(D) >
v

d+ 1
>

v

2d
>

219m
9

8

(ldm)2
> 212m > m,

as 8
√
m(ldm)−2 has a minimum of (e log 2/16)2 > 2−7 at e16.

Case 3.. d̄ > 3 and there are fewer than v ·d2−ε transitive triangles in D. By
Lemma 2.1(1), we have

d < 2r(Im, Ln−1) 6 217n−16 · mn−2

(ldm)n−3
.

16



As ld(x)/x is decreasing for x > 3, by Lemma 5.5,

α(D) >
εv · ld d̄
215d̄

>
εv ld d

215d
>

217n−15εmn−1 ld d

d(ldm)n−2

>
2εm(17n− 16 + (n− 2) ldm− (n− 3) ld ldm)

ldm

=7m · 17n− 16 + (n− 2) ldm− (n− 3) ld ldm

4(n− 1) ldm

=
7m

4

(

17

ldm
+

1

(n− 1) ldm
+

(

1− 2

n− 1

)(

1− ld ldm

ldm

)

+
1

n− 1

)

>
7m

4

(

17

ldm
+

(

1− 2

n− 1

)(

1− ld ldm

ldm

)

+
1

n− 1

)

> m.

To see that the last inequality is true, we distinguish two subcases. First we
assume that (ldm)4 > m. Then ldm 6 16, so:

7m

4

(

17

ldm
+

(

1− 2

n− 1

)(

1− ld ldm

ldm

)

+
1

n− 1

)

>
7m

4

(

17

ldm
+

(

1− 2

n− 1

)(

1− ld ldm

ldm

))

>
7m

4
· 17

ldm
>

7m

4
· 17
16

>
119m

64
>

9m

5
> m.

Now we assume that (ldm)4 6 m. Also recall that n > 4. Then

7m

4

(

17

ldm
+

(

1− 2

n− 1

)(

1− ld ldm

ldm

)

+
1

n− 1

)

>
7m

4

((

1− 2

n− 1

)(

1− ld ldm

ldm

)

+
1

n− 1

)

>
7m

4

((

1− 2

n− 1

)(

1− 1

4

)

+
1

n− 1

)

>
7m

4

((

1− 2

n− 1

)

3

4
+

1

n− 1

)

>
7m

4

(

3

4
− 1

2n− 2

)

>
7m

4

(

3

4
− 1

6

)

>
7m

4
· 7

12
>

49m

48
> m.

This implies Theorem 1.3.
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6. Coda

There are more open problems in finite combinatorics stemming from set
theory. Determining r(I3, L4) would continue our work and seems feasible
given the size of the candidates for examples of {I3, L4}-free graphs.

Finally, for the Ramsey numbers r(ωm, n) formulae have been found for
all natural numbers m 6= 4 and all natural numbers n by Nosal in [16, 15].
The determination of the numbers r(ω4, n) by a formula, however, has still
to be accomplished.

A Formula for Small m and n

We provide the following—admittedly slightly baroque—formula. It gives
asymptotically suboptimal upper bounds for r(Im, Ln) but provides the state
of the art for small m and n. Let

v(m,n) :=

n−2
∑

i=0

(

i+m− 1

i+ 1

)

2i −
(

m+ n− 6

m− 4

)

2n−3 + 1.

The following proposition can be proved from Lemma 2.3 by induction
on m and n

Proposition 6.1. We have r(Im, Ln) 6 v(m,n) for all natural numbers m
and n with m > 2 and n > 3.

References

[1] A. Hajnal and J. A. Larson. Handbook of set theory. Vol. 1, chapter
Partition relations, pages Vol. 1: xiv+736 pp. Springer, Dordrecht,
2010, http://www.math.rutgers.edu/%7Eahajnal/newhaj-lar.pdf.

[2] M. Ajtai, J. Komlós and E. Szemerédi. A note
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132, 1964, http://www.renyi.hu/~p_erdos/1964-22.pdf.
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