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Abstract

We consider a biphasic continuum model for avascular tumour growth in two spatial
dimensions, in which a cell phase and a fluid phase follow conservation of mass and momen-
tum. A limiting nutrient that follows a diffusion process controls the birth and death rate of
the tumour cells. The cell volume fraction, cell velocity–fluid pressure system, and nutrient
concentration are the model variables. A coupled system of a hyperbolic conservation law,
a viscous fluid model, and a parabolic diffusion equation governs the dynamics of the model
variables. The tumour boundary moves with the normal velocity of the outermost layer of
cells, and this time–dependence is a challenge in designing and implementing a stable and
fast numerical scheme. We recast the model into a form where the hyperbolic equation is de-
fined on a fixed extended domain and retrieve the tumour boundary as the interface at which
the cell volume fraction decreases below a threshold value. This procedure eliminates the
need to track the tumour boundary explicitly and the computationally expensive re–meshing
of the time–dependent domains. A numerical scheme based on finite volume methods for
the hyperbolic conservation law, Lagrange P2 − P1 Taylor–Hood finite element method for
the viscous system, and mass–lumped finite element method for the parabolic equations is
implemented in two spatial dimensions, and several cases are studied. We demonstrate the
versatility of the numerical scheme in catering for irregular and asymmetric initial tumour
geometries. When the nutrient diffusion equation is defined only in the tumour region, the
model depicts growth in free suspension. On the contrary, when the nutrient diffusion equa-
tion is defined in a larger fixed domain, the model depicts tumour growth in a polymeric
gel. We present numerical simulations for both cases and the results are consistent with
theoretical and heuristic expectations such as early linear growth rate and preservation of
radial symmetry when the boundary conditions are symmetric. The work presented here
could be extended to include the effect of drug treatment of growing tumours.

Keywords Two phase model, Asymmetric tumour growth, Finite element – Finite volume
schemes, Moving boundary.

Mathematics Subject Classification 35Q92, 65M08, 65M50, 5R37.

1 Introduction

The initial growth of a proliferating tumour does not contain vascular tissues, which forces the
tumour to depend on diffused nutrients from the surrounding environment for its growth. The
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modelling and numerical simulations of this stage, namely the avascular growth stage, has been
a frontier research area since the late 1970s [14, 25, 26]. Depending on the scale of observation –
cellular level (microscopic) or aggregate level (tissue or macroscopic) – and nature of interactions
between the constituents, there are several mathematical approaches and methods to model the
avascular growth stage. A detailed review of various models can be found in Roose et al. [20]
and Araujo et al. [1].

An extensive amount of scientific literature is available regarding the mathematical modelling
of avascular tumour growth and multicellular spheroids [3, 4, 5, 6, 7, 22]. We focus on models
based on mass balance equations, diffusion equations, and continuum mechanics [18]. Such
models are reasonably easy to numerically implement using appropriate combinations of finite
element methods and finite volume methods. This paper complements the previously mentioned
works by relaxing several assumptions and extending to more general situations like asymmetric
and irregular initial tumour geometries.

We consider a biphasic and viscous tumour model with a time–dependent spatial boundary
in two and three spatial dimensions. The tumour cells constitute a viscous phase called the
cell phase and the surrounding fluid medium constitute an inviscid phase called the fluid phase.
The cell and fluid phases actively exchange matter through the processes of cell division and
cell death. The diffusing nutrient controls the birth and death rates of the cells. H. M. Byrne
et al. [6] considered an early version of this model and C. J. W. Breward et al. [3, 4] conducted
a detailed study of the one–dimensional version. In these works, the authors present a detailed
analysis of the effect of model parameters including the viscosity coefficient of the cell phase,
drag coefficient between the cell and fluid phases, and parameters that determine attractive
and repulsive forces between the tumour cells. A model based on multiphase mixture theory
is described in the work by H. M. Byrne and L. Preziosi [7], in which they use a continuous
cell–cell force term in contrast to the discontinuous force term in [3].

The previously mentioned models successfully describe the evolution of tumour radius and
the effect of model parameters. However, to reduce a higher spatial dimensional model to a
single spatial dimension, it is assumed that the tumour is growing radially symmetrically. This
assumption is not valid if the initially seeded tumour is irregular in shape. Also, the time–
dependent boundary is not well defined except in the radially symmetric case. In this article,
we adapt and recast the model in [6] such that symmetry assumptions are relaxed, ill–posedness
of the time–dependent boundary is corrected, and numerical simulations are feasible without
reducing the dimensionality.

J. M. Osborne and J. P. Whiteley [18] developed a generic numerical framework for multi-
phase viscous flow equations and applied it to simulate tissue engineering models and tumour
growth models. Though the numerical scheme presented in [18] is robust, the tumour growth
model considered is ill–posed. Here, the viscous system that governs the cell velocity has a
solution unique only up to a (rigid–body motion) function of the form u(x) = Bx+ β, where
B is a skew–symmetric matrix, x ∈ R

d, and β ∈ R
d is a constant. This non–uniqueness for

viscous equations with pure traction boundary condition is a well–established fact in the theory
of continuum mechanics [10, p. 155]. At the discrete level, the resulting non–invertibility of
the coefficient matrix is overcome by imposing an auxiliary condition. A natural approach is
to set the cell velocity at the centre of the tumour to be zero. However, this approach has
the following drawbacks. Firstly, the auxiliary condition is not inbuilt with the model; in-
stead, it is a numerical level fix. Secondly, in the case of an asymmetrically shaped tumour
a well–defined centre is absent. Even if we define the centre in a mathematical way, say as
the centre of mass, it will vary over time, and consequently, the auxiliary condition as well,
thereby making the numerical algorithm computationally intense. Thirdly, fixing the velocity
at a single point does not fully eliminate the non–uniqueness. In fact, in two dimensions, even
after imposing this condition, solution of the viscous equation is unique only up to functions
of the form u(x, y) = a(y0 − y, x − x0) + (α1, α2), where a ∈ R is an arbitrary constant and
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u(x0, y0) = (α1, α2) for fixed vectors (x0, y0) and (α1, α2). The function u can be decomposed
into the form, u(x, y) = aBπ/2(x, y)

T + (ay0 +α1,−ax0 +α2), where the matrix Bπ/2 =
(
0 −1
1 0

)

represents the anticlockwise rotation by π/2 radians. Therefore, u is the sum of a scaled ro-
tation and a translation in the Cartesian plane, and such functions constitute the null space
of the linear operator acting on u. In the current work, we circumvent the need for any such
numerical fix by ensuring the well–posedness of the viscous system. In particular, we employ
appropriate boundary conditions arising from physical considerations on the model.

P. Macklin and J. Lowengrub [17] considered a ghost cell method for moving interface
problems and applied it to a quasi–steady state reaction–diffusion model. However, the model
is defined on a fixed domain, and the time–dependent interface is embedded in this fixed domain.
The model we consider has an explicit moving boundary associated with it and hence the scheme
in [17] does not directly apply. M. C. Calzada et al. [8] use a fictitious domain method to capture
the time–dependent boundary. In a sense, we combine the synergy of both of these works:
the time–dependent boundary problem is transformed to a fixed boundary problem without
introducing any additional variables as in a level set method. Instead, we use an unknown
variable in the model itself to characterise the moving boundary. The major contributions of
this article are as follows:

(1) A mathematically well–defined model that does not assume symmetric tumour growth is
developed by adapting previous models.

(2) Two variants of this model depicting the tumour growth in (a) free suspension and (b) in
vivo surrounded by tissues or in vitro in a passive polymeric gel are presented.

(3) We construct an extended model defined in a fixed domain and solutions of this model are
used to recover solutions of the original model. Since no additional variables are introduced
to achieve this (as in level set methods), the complexity of the model is not increased.

(4) We consider a numerical scheme based on finite volume methods, Lagrange P2−P1 Taylor–
Hood finite element method, and mass–lumped finite element methods. The numerical
scheme eliminates the need for re–meshing the time–dependent domain at each time step,
which makes the computations economical.

(5) The numerical results are consistent with the findings from previous literature. We demon-
strate the versatility of the scheme in simulating initial tumour geometries with irregular
and asymmetric shape and tumours with a changing topological structure.

The paper is organised as follows. In Section 2, we present the model assumptions, variables,
and corresponding governing equations. The preliminaries and notations are presented in Sec-
tion 3. In Section 4, we present the notion of weak solutions and the main theorem that yields
the equivalence between two different weak solutions in an appropriate sense. In Section 5,
we provide the discretisation of the spatial and temporal domains and details of the numerical
scheme. In Section 6, we apply the numerical scheme presented in Section 5 to cases under
different growth conditions and discuss the results in detail along with the scope for future
research.

2 Model presentation

The temporal and spatial variables are respectively denoted by t and x := (xi)i=1,...,d (d =
2 or 3) in the sequel. All equations and parameters are presented in dimensionless form. In the
case d = 2, we take x = (x, y). At time t ∈ (0, T ), the tumour occupies the spatial domain
Ω(t) in R

d. The initial domain Ω(0) is a part of the given data. The tumour occupies the
time–space domain DT := ∪t∈(0,T )({t}×Ω(t)). We assume that Ω(t) is a bounded domain with
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a C 1–regular boundary [11, p. 627] given by Γ(t) = ∂Ω(t) for t ∈ [0, T ). The time–dependent
boundary BT := ∂DT \(({0} × Ω(0)) ∪ ({T} × Ω(T ))) of DT is also assumed to be C 1–regular
with respect to the time and space variables (see Figure 1). Let Ωℓ = (−ℓ, ℓ)d be a domain in
R
d such that Ω(t) ⊂ Ωℓ for every t ∈ [0, T ), which ensures DT ⊂ DT = (0, T ) × Ωℓ. Let n|Γ(t)

be the unit normal to Γ(t) pointing from Ω(t) and n|BT
be the (time–space) unit normal to

BT pointing from DT . If Ω(t) ⊂ R
2, then τ |Γ(t) denotes the unit tangent vector to Γ(t). The

projection of u on the tangent space of ∂A, where A ⊂ R
d is denoted by u∂A,τ , which is defined

by u∂A,τ := (u|∂A · τ |∂A)τ |∂A in two spatial dimensions and u∂A,τ := n|∂A × (u|∂A × n∂A) in
three spatial dimensions.
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Figure 1: Three dimensional time–space domain occupied by the tumour. Here, 2ℓ is the side
length of the square Ωℓ ⊂ R

2, T is the final time of tumour growth, Ω(t) ⊂ Ωℓ is the domain
occupied by the tumour at time t, Γ(t) is the boundary of Ω(t), DT is the time–space domain
∪0<t<T ({t}×Ω(t)), BT (pink envelope) is the evolving boundary given by ∂DT \(({0}×Ω(0))∪
({T} × Ω(T ))), and DT is the time–space domain (0, T )× Ωℓ.

The relative volume of tumour cells (cell phase) and extra–cellular fluid (fluid phase) are
denoted by α := α(t,x) and β := β(t,x), respectively. We assume that the tumour does not
contain any voids, which implies that α + β = 1, and hence β can be determined using α.
The velocity by which the cells are moving is denoted by u := u(t,x). The average pressure
experienced in the fluid phase is denoted by p := p(t,x). The cell growth is controlled by a
limiting nutrient and c := c(t,x) represents its concentration.

Depending on the conditions in which the tumour is growing, the nutrient supply can be
abundant or limited. For instance, when the growth is in vitro, the external atmosphere acts
as an unlimited source of nutrients, like oxygen. On the contrary, when the growth is in vivo,
the tissues and other biological materials around the tumour hinder the smooth diffusion of
nutrients from the adjacent capillary tissues. Hence, the nutrient supply is limited in the in
vivo case. We consider the two cases of in vitro and in vivo growth, and present models to
describe them.
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2.1 Common features of both models

The in vitro model comes from [6], and the in vivo one is a slight modification of this model.
Both models are presented in dimensionless form and seek the variables (α,u, p, c,Ω) such that
the mass balance on α and the momentum balance on (u, p) hold in the moving domain: for
every t ∈ (0, T ) and x ∈ Ω(t),

∂tα+ div(αu) = αf(α, c), (2.1a)

−div (αε(u)) +∇p = −∇H (α), and (2.1b)

−div

(
1− α

kα
∇p

)
+ div(u) = 0. (2.1c)

The difference between the two models lies in the domain over which the oxygen tension satisfies
the following reaction–diffusion equation:

∂tc− div(η∇c) = − Qcα

1 + Q̂c
. (2.1d)

Above, the function f is defined by f(α, c) := (1−α)b(c)−d(c), where b(c) := (1+s1)c/(1+s1c),
d(c) := (s2+s3c)/(1+s4c), and s1, s2, s3 and s4 are positive constants which control proliferation
and death rates of the tumour cells. The operator ε is defined by ε(u) := 2µ∇su+ λdiv(u)Id,
where Id is the d–dimensional identity tensor and ∇su = (∇u+(∇u)T )/2. The scalar constants
µ and λ are the shear and bulk viscosity coefficients, respectively and are related by λ = −2µ/3
and µ > 0. The function H (α) is defined by α(α − α∗)+/(1 − α)2, where α∗ is a positive
constant, s+ := max(0, s), and s− := −min(0, s) in the sequel. The positive constant k controls
the traction between the cell and fluid phases. The constant η > 0 is the diffusivity coefficient
of the limiting nutrient inside the tumour, and the constants Q > 0, further referred to as the
absorptivity coefficient, and Q̂ ≥ 0 control the nutrient consumption by the cells.

The initial condition on α and the boundary conditions on (u, p) are also common to both
models:

α(0,x) = α0(x) ∀x ∈ Ω(0), (2.1e)

(−αε(u) + pId) · n|Γ(t) = −H (α)Id · n|Γ(t), uΓ(t),τ = 0 , p|Γ(t) = 0 ∀t ∈ (0, T ). (2.1f)

The moving boundary is governed by the ordinary differential equation:

∂tγ · n|Γ(t) = u|Γ(t) · n|Γ(t) ∀t ∈ (0, T ), (2.1g)

where γ is a local parametrisation of BT . We assume that 0 < m01 ≤ α0(x) ≤ m02 < 1 and
0 ≤ c0(x) ≤ 1 for every x ∈ Ω(0), where m01 and m02 are positive constants.

Remark 2.1. Note that in (2.1g) we only specify the normal velocity of the moving boundary.
The tangential velocity is not provided here. This is because tangential velocity does not change
the topological structure of BT , but changes only the parametrisation of BT . Therefore, the
domain DT , that is the time–space region enclosed by BT , is independent of the tangential
velocity of the moving boundary. The extended solution presented in Definition 4.4 below recovers
the domain DT without resorting to an explicit parametrisation of the boundary BT , and is an
added advantage of the notion of the extended solution.

The initial and boundary conditions for c depend on each model and are made precise in
the next sections. Table 1 summarises the two models.
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Equation NUM NLM

Evolution of α,u, p, Eqs. (2.1a)–(2.1c) x ∈ Ω(t)

Boundary conditions α,u, p (2.1f)

Initial conditions on α (2.1e)

Evolution of c, Eq. (2.1d) For x ∈ Ω(t) For x ∈ Ωℓ

Initial conditions on c (2.3) (on Ω(0)) (2.5) (on Ωℓ)

Boundary conditions c (2.2) (on Γ(t)) (2.4) (on ∂Ωℓ)

Table 1: Summary of NUM and NLM models.

2.2 Nutrient unlimited model (NUM)

In the nutrient unlimited model (NUM), we assume that the tumour grows in free space. Since
the tumour has no voids within and is close–packed, it is reasonable to assume that the nutrient
diffusion rate in the tumour is much lower than that of the free space outside the tumour.
The nutrient consumed by the boundary cells is immediately replenished by the fast diffusing
external nutrient supply. As a consequence, the oxygen tension equation (2.1d) is only solved on
the moving domain, for t ∈ (0, T ) and x ∈ Ω(t), and at the boundary of this moving domain the
nutrient concentration is set as the maximum value, which is unity after non–dimensionalisation.
This leads to the following boundary and initial conditions for c:

c|Γ(t) = 1 ∀t ∈ (0, T ), (2.2)

c(0,x) = c0(x) ∀x ∈ Ω(0), (2.3)

2.3 Nutrient limited model (NLM)

In the nutrient limited model (NLM), we assume that the tumour is growing inside a medium
or a tissue. In this case, the nutrient diffusion rates in the exterior and interior regions of the
tumour are in the same numerical range. Therefore, considerable delay can be expected for
the nutrient to diffuse through the medium and reach the tumour. Consequently, the nutrient
concentration at the tumour boundary is not unity at every time and one has to model the
diffusion of the nutrient in the medium and in the tumour. Taking Ωℓ as the spatial region that
encloses the tumour and the medium, the oxygen tension equation (2.1d) is therefore solved for
t ∈ (0, T ) and x ∈ Ωℓ (η could change between the external medium and the tumour), and the
boundary and initial conditions on c are

c(t,x) = cb(x) ∀t ∈ (0, T ) , ∀x ∈ ∂Ωℓ, (2.4)

c(0,x) = 0 ∀x ∈ Ωℓ, (2.5)

This initial condition means that no nutrient is available for the tumour cells initially. The
boundary data satisfy 0 ≤ cb ≤ 1, and depends on the modelling situation under consideration.
For illustrative purposes in two dimensions, we assume that blood vessels are present at y = −ℓ
or x = −ℓ only. Therefore, the nutrient concentration at the boundary, cb, is unity at y = −ℓ
or x = −ℓ and zero at the other points in ∂Ωℓ.

3 Preliminaries and notations

We describe a smooth hypersurface, S ⊂ R
d and a local parametrisation of S. For a detailed

discussion on these topics, the reader may refer to [23, Chapter 2]. The notion of the local
parametrisation of a smooth surface is crucial in extending the NUM and NLM models defined
in DT to DT , and thereby in eliminating the need for the evolving boundary, BT .
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Definition 3.1 (C 1−smooth hypersurface). A set S ⊂ R
d is said to be a C 1−smooth hyper-

surface in R
d if the following conditions hold:

(SH.1) For each z ∈ S, there exists an open set Oz ⊂ R
d containing z and a function

fz : Oz → R such that S ∩ Oz = {x ∈ Oz : fz(x) = 0}.

(SH.2) Each fz in (SH.1) belongs to C 1(Oz) and ∇fz 6= 0 on Oz.

The collection {Oz, fz}z∈S is called a C 1−smooth local representation of S.

Definition 3.2 (Regular surface and local parametrisation). A set S ⊂ R
d is said to be a

regular surface if for each z ∈ S, there exists open sets Uz ⊂ R
d−1 and Vz ⊂ R

d with z ∈ Vz,
and a diffeomorphism σz : Uz → Vz∩S. Each σz is called a coordinate chart, and the collection
{Uz, Vz,σz}z∈S is called a local parametrisation for S.

If {Oz, fz}z∈S is a C 1−smooth local representation of the C 1−smooth hypersurface S, then
the normal to S at a point z ∈ S is given by ∇fz(z)/||∇fz(z)||2, and this is meaningful
since ∇fz(z) 6= 0 by Definition 3.1. An application of Theorem 3.27 in [23] shows that every
C 1−smooth hypersurface is regular and therefore, has a local parametrisation.

3.1 Function spaces and norms

In this subsection, we give the definitions of function spaces and norms used in the remaining
of this article.

For a domain A ⊂ R
d, Lp(A) (1 ≤ p ≤ ∞) and H1(A) are standard Sobolev spaces of

functions f : A → R. The notation (·, ·)A stands for the standard L2(A) inner product. The
space H1

d(A) = (H1(A))d is the collection of functions u = (u1, . . . , ud) such that ui : A → R

and ui ∈ H1(A) for i = 1, . . . , d.

We define the norms ||u||0,A := (u,u)
1/2
A and ||u||k,A :=

∑d
i=1

∑
j,|j|≤k ||∂jui||0,A, where

j is a multi-index. Define the subspace of functions in H1
d(A) with homogeneous tangential

component at ∂A, and the subspace of functions inH1(A) with homogeneous Dirichlet boundary
condition ∂A, respectively by

H1
0,τ (A) := {u ∈ H1

d(A) : u∂A,τ = 0} and

H1
0 (A) := {f ∈ H1(A) : f|∂A = 0}.

The space BV (A) denotes the the space of all functions with bounded variation (see Defini-
tion A.(c)) on the set A.

Let AT = ∪0<t<T {t}×X(t), where {X(t)}t∈(0,T ) is a family of domains such that X(t) ⊂ R
d

for every t ∈ (0, T ). Define the Hilbert spaces

H1,u
∇ (AT ) :={u ∈ (L2(AT ))

d : ∂xj
ui ∈ L2(AT ), i, j = 1, . . . , d

and u∂X(t),τ = 0 ∀t ∈ (0, T )} and

H1,c
∇ (AT ) :={c ∈ L2(AT ) : ∇c ∈ (L2(AT ))

d and c|∂X(t)
= 0 ∀t ∈ (0, T )}.

4 Weak solutions and equivalence theorem

In this section, we first establish in Section 4.1 the well–posedness of the weak form of the
velocity–pressure momentum balance, and present two weak formulations of the NUM model
(2.1)–(2.3). In the first one, the scalar conservation law (2.1a) is set on the moving domain
Ω(t), while in the second one the velocity and oxygen tension are extended to the entire box
Ωℓ and the cell volume fraction α is set to satisfy the conservation law (2.1a) on this box. The
interest of this second model, as already illustrated in the one dimensional case in [9, 19], is to
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enable the usage of a discrete scheme using a fixed background mesh, rather than a mesh that
moves with the domain Ω(t).

The two weak formulations are shown in Section 4.2 to be equivalent. The key relation for
establishing this equivalence is Proposition 4.7, which establishes a formula for the outer normal
to the time–space tumour domain in terms of the cell volume fraction, as well as the fact that if
a piecewise smooth vector field F has an L2 divergence, then it has a zero normal jump across
any hypersurface.

We only consider here the NUM model, the extension to NLM being straightforward.

4.1 Well-posedness of velocity-pressure system

We present the weak formulations of (2.1b) and (2.1c) with boundary conditions (2.1f), which
remain the same for Definition 4.3 and Definition 4.4. Let u ∈ H1,u

∇ (DT ) and p ∈ H1,c
∇ (DT ).

The weak formulations are as follows. For all v ∈ H1,u
∇ (DT ) and z ∈ H1,c

∇ (DT ), and for each
t ∈ (0, T ) it holds

at1(u(t, ·),v(t, ·))− at3(p(t, ·),v(t, ·)) = Lt
α(v(t, ·)) and (4.1a)

at2(p(t, ·), z(t, ·)) + at3(z(t, ·),u(t, ·)) = 0, (4.1b)

where at1 : H1
0,τ (Ω(t)) ×H1

0,τ (Ω(t)) → R, at2 : H1
0 (Ω(t)) ×H1

0 (Ω(t)) → R, and at3 : H1
0 (Ω(t)) ×

H1
0,τ (Ω(t)) → R are bilinear forms given by: for ψj ∈ H1

0,τ (Ω(t)) and qj ∈ H1
0 (Ω(t)), where

j ∈ {1, 2},

at1(ψ1,ψ2) =

ˆ

Ω(t)
α(t, ·) (2µ∇sψ1 : ∇sψ2 + λdiv(ψ1)div(ψ2)) dx,

at2(q1, q2) =

ˆ

Ω(t)

1− α(t, ·)
kα(t, ·) ∇q1 · ∇q2 dx, and

at3(q1,ψ1) =

ˆ

Ω(t)
q1 div(ψ1) dx,

and Lt
α : H1

d(Ω(t)) → R is a linear form given by

Lt
α(ψ1) =

ˆ

Ω(t)
H (α(t, ·))div(ψ1) dx.

Under the assumption that α : DT → R is known and satisfies 0 < m11 ≤ α ≤ m12 < 1, where
m11 and m12 are positive constants, we show that for each t ∈ (0, T ), (4.1a) and (4.1b) are
well-posed. In Theorem 4.2, we suppress the time dependency for the ease of notation; hence,
u in Theorem 4.2 stands for u(t, ·), and so do v, p, and z.

Lemma 4.1. If v ∈ H1
0,τ (Ω(t)), then there exists a constant CKP > 0 such that CKP ||v||1,Ω(t) ≤

||∇s(v)||0,Ω(t).

Proof. Consider the spaces X = H1
0,τ (Ω(t)), Y = [L2(Ω(t))]d×d, and Z = [L2(Ω(t))]d, and the

linear map A := ∇s : X → Y and the natural embedding T := id : X → Z. Theorem 13 in [2]
shows that A is an injection. The natural embedding T is compact by Rellich-Kondrachov The-
orem. Korn’s second inequality (Theorem A.(a)) yields CK ||v||1,Ω = CK ||v||X ≤ ||∇s(v)||0,Ω +
||v||0,Ω = ||Av||Y + ||Tv||Z . An application of Petree–Tartar lemma (Theorem A.(b)) yields the
desired conclusion.

Theorem 4.2 (Well-posedness). Define the product space Ht
u,p := H1

0,τ (Ω(t))×H1
0 (Ω(t)) and

the bilinear operator A
t : Ht

u,p ×Ht
u,p → R by

A
t ((u, p), (v, z)) = at1(u,v)− at3(p,v) + at2(p, z) + at3(z,u).
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If 0 < m11 ≤ α ≤ m12 < 1, then A
t is a continuous and coercive bilinear form in Ht

u,p, and
the linear form L

t : Ht
u,p → R defined by L

t(v, z) = Lt
α(v) is continuous on Ht

u,p. Hence, there
exists a unique (u, p) ∈ Ht

u,p such that for all (v, z) ∈ Ht
u,p,

A
t ((u, p), (v, z)) = L

t((v, z)). (4.2)

Proof. Continuity of the bilinear form follows from the estimates below. Since ||div(u)||0,Ω(t) ≤√
d||u||1,Ω(t),

A
t ((u, p), (v, z)) ≤ 2m12(µ+ λ)||u||1,Ω(t)||v||1,Ω(t) + ||p||1,Ω(t)

√
d||v||1,Ω(t)

+
1−m11

km11
||p||1,Ω(t)||z||1,Ω(t) +

√
d||z||1,Ω(t)||u||1,Ω(t)

≤ C (||u||21,Ω(t) + ||p||21,Ω(t))
1/2(||v||21,Ω(t) + ||z||21,Ω(t))

1/2,

where C is a constant. Set v = u and z = p in A
t ((u, p), (v, z)) to obtain,

A
t ((u, p), (u, p)) = at1(u,u) + at2(p, p)

≥ 2m11µ

ˆ

Ω(t)
∇su : ∇su dx+

1−m12

km12
||p||21,Ω(t).

Then, Lemma 4.1 yields the coercivity of At. The following estimate yields the continuity of Lt:

L
t(v, z) ≤

√
2max(1,H (m12)

√
dµRd(Ω(t)))(||v||21,Ω(t) + ||z||21,Ω(t))

1/2,

where µRd is the d-dimensional Lebesgue measure. An application of Lax-Milgram theorem
establishes the existence of a unique (u, p) ∈ Ht

u,p such that (4.2) (hence, (4.1a) and (4.1b))
holds.

Definition 4.3 (NUM–weak solution). A weak solution of the NUM in DT , further referred to
as NUM–weak solution, is a five-tuple (α,u, p, c,Ω) such that (SW.1)-(SW.4) hold.

(SW.1) The volume fraction satisfies α ∈ L∞(DT ), 0 < m11 ≤ α ≤ m12 < 1, where m11 ≤
m01 and m02 ≤ m12 are constants, and ∀ϕ ∈ C∞

c (DT \({T} × Ω(T )))

ˆ

DT

(α, αu) · ∇(t,x)ϕ dtdx+

ˆ

Ω(0)
ϕ(0,x)α0(x) dx+

ˆ

DT

αf(α, c)ϕ dtdx,

=

ˆ

BT

(α,uα) · n|BT
ϕ ds. (4.3)

(SW.2) The velocity u ∈ H1,u
∇ (DT ) and pressure p ∈ H1,c

∇ (DT ) satisfy (4.1a) and (4.1b) for

every v ∈ H1,u
∇ (DT ) and z ∈ H1,c

∇ (DT ).

(SW.3) The nutrient concentration is such that c− 1 ∈ H1,c
∇ (DT ), c ≥ 0, and ∀ ζ ∈ H1,c

∇ (DT )
with ∂tζ ∈ L2(DT )

−
ˆ

DT

c ∂tζ dx dt−
ˆ

DT

η∇c · ∇ζ dx dt+

ˆ

Ω(0)
c0(x)ζ(0,x) dx

+

ˆ

DT

Qcα

1 + Q̂1c
ζ dx dt = 0. (4.4)

(SW.4) The time-dependent boundary Γ(t) is governed by (2.1g).
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Definition 4.4 (NUM–extended solution). A weak solution of the NUM in DT , further referred
to as NUM–extended solution, is a four-tuple (α̃, ũ, p̃, c̃) such that (SE.1)–(SE.4) hold.

(SE.1) The function α̃ is such that α̃ ∈ L∞(DT ), α̃ ≥ 0, and ∀ ϕ̃ ∈ C∞
c ([0, T )× Ωℓ):

ˆ

DT

(α̃, ũα̃) ·∇(t,x)ϕ̃ dt dx+

ˆ

Ω(0)
ϕ̃(0,x)α0(x) dx+

ˆ

DT

α̃f(α̃, c̃)ϕ̃ dt dx = 0. (4.5)

(SE.2) For a fixed t, define Ω̃(t) := {(t,x) : α̃(t,x) > 0} and D̃T := ∪0<t<T {t}× Ω̃(t). Then,
it holds ũ

|DT \D̃T

= 0, p̃
|DT \D̃T

= 0, and c̃
|DT \D̃T

= 1.

(SE.3) The functions ũ
|D̃T

and p̃
|D̃T

is such that ũ
|D̃T

∈ H1,u
∇ (D̃T ), p̃|D̃T

∈ H1,c
∇ (D̃T ) and

satisfy (4.1a)–(4.1b) with Ω(t), DT , and α set as Ω̃(t), D̃T , and α̃
|Ω̃(t)

, respectively.

(SE.4) The function c̃
|D̃T

is such that c̃
|D̃T

− 1 ∈ H1,c
∇ (D̃T ) and satisfies (4.4) with DT set

as D̃T for all ζ ∈ H1,c
∇ (D̃T ) with ∂tζ ∈ L2(D̃T ).

4.2 Equivalence of weak solutions

In this subsection, we show that Definitions 4.3 and 4.4 are equivalent to each other in an
appropriate sense and under some regularity assumptions on BT . In particular, we show that
the recovered domain D̃T in Definition 4.4 is equal to DT in Definition 4.3.

Definition 4.5 (Time projection map). The time projection map πt : R
+ × R

d−1 → R
+ × R

d

is defined by πt(t,y) = t for all (t,y) ∈ R
+ × R

d−1.

Remark 4.6 (Time-slice property of BT ). While constructing a local parametrisation for BT

in the sense of Definition 3.2, we use time also as a parameter through the time projection
map πt to preserve the ‘time-slice’ geometry of BT = ∪t{t} × ∂Ω(t) in the following way.
Let (R+ × Uω,R

+ × Vω, σw = (πt,γω)) be a local parametrisation around w ∈ BT of the
evolving boundary BT in the sense of Definition 3.2. Then, for a fixed time, t, the restriction
{Uω, Vω,γω(t, ·)}ω∈{t}×∂Ω(t) is a local parametrisation of ∂Ω(t). The time-slice structure of a
local parametrisation for BT is crucial in proving Proposition 4.7.

The next proposition provides a formula for the unit normal vector to the hypersurface BT in
terms of local parametrisations.

Proposition 4.7. Let {R+×Uω,R
+×Vω, σw = (πt,γω)}ω be a local parametrisation of BT as in

Remark 4.6 and {Oω, fω} be a C 1–smooth local representation of it in the sense of Definition 3.1,
where ω = (t, z) ∈ BT . Then, the unit normal to the hypersurface BT can be expressed as
follows:

nBT
=

(−∇fω · ∂tγω,∇fω)

||(−∇fω · ∂tγω,∇fω)||2
. (4.6)

Proof. A (non-unit) normal toBT at the point (t, z) ∈ BT∩Oω can be expressed as∇(t,x)fω(t, z) =
(∂tfω(t, z),∇fω(t, z)). Definition 3.2 yields a point (t,y) ∈ R

+ × Uω such that (t, z) =
(t,γω(t,y)) . Since fω is zero in BT ∩ Oω the time derivative d

dtfω(t,γ(t,y)) is also zero.
Therefore, in BT ∩ Oω

∂tfω(t, z) = −∇fω(t, z) · ∂tγω(t,y)

and a normal to BT at (t, z) is provided by

∇(t,x)fω(t, z) = (−∇fω(t, z) · ∂tγω(t,y),∇fω(t, z)),

normalisation of which yields (4.6).
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Remark 4.8. Since {Oω, fω} is a C 1−smooth local representation of the hypersurface BT , for
a fixed time t, the unit normal to the boundary Γ(t) is given by −∇fω/||∇fω||2.

Next, we present the equivalence between the weak formulations (SE.1) and (SW.1).

Theorem 4.9 (Equivalence). (ET.a) Let BT be C 1–regular and (α,u, p, c,Ω) be a NUM-
weak solution. Set α̃ := α, ũ := u, p̃ := p and c̃ := c in DT ; α̃ := 0, ũ := 0,
p̃ := 0 and c̃ := 1 in DT \DT . If α ∈ BV (DT ), then (α̃, ũ, p̃, c̃, Ω̃) is a NUM-extended
solution.

(ET.b) Let (α̃, ũ, p̃, c̃, Ω̃) be a NUM-extended solution and assume that B̃T := ∂D̃T \([{0} ×
Ω(0)]∪[{T}×Ω̃(T )]) is C 1–regular, where D̃T is given by (SE.2) in Definition 4.4 and
α̃
|D̃T

> 0 on B̃T . If there exist constants 0 < m̃11 ≤ m01 and m02 ≤ m̃12 < 1 such that

m̃11 ≤ α̃
|D̃T

≤ m̃12 and α̃ ∈ BV (DT ), then D̃T = DT and (α̃|DT
, ũ|DT

, p̃|DT
, c̃|DT

, Ω̃)

is a NUM-weak solution.

Proof.

(ET.a) Let {R+ × Uω,R
+ × Vω, σw = (πt,γω)}ω be a local parametrisation of BT . Choose

ϕ̃ belonging to C∞
c ([0, T )× Ωℓ). Since ϕ̃|DT

∈ C∞
c (DT \({T} × Ω(T ))) and α̃ = 0 in

DT \DT , the following holds:

ˆ

DT

(α̃, α̃ũ) · ∇(t,x)ϕ̃ dt dx+

ˆ

Ω(0)
ϕ̃(0,x)α0(x) dx+

ˆ

DT

α̃f(α̃, c̃)ϕ̃ dt dx

=

ˆ

BT

(α, αu) · nBT
ϕ̃ ds (4.7a)

and
ˆ

DT \DT

(α̃, α̃ũ) · ∇(t,x)ϕ̃ dt dx+

ˆ

DT \DT

α̃f(α̃, c̃)ϕ̃ dt dx = 0. (4.7b)

A use of Proposition 4.7 and Remark 4.8 yields

KN (α, αu)|BT
· nBT

= (α, αu)|BT
·
(
−n|Γ(t) · ∂tγω,n|Γ(t)

)
, (4.8)

where KN 6= 0 is a normalisation constant. We then use (2.1g) in (4.8) to obtain
(α, αu)|BT

· nBT
= 0. Add (4.7b) and (4.7a) to arrive at (4.5). The conditions on

ũ, p̃, and c̃ follow naturally from Definition 4.4.

(ET.b) Let {R+ × Uω,R
+ × Vω, σw = (πt,γω)}ω be a local parametrisation of B̃T . Define a

vector field F : DT → R
d+1 by F := (α̃, α̃ũ). For (t0,x0) ∈ B̃T , define

F
|B̃+

T
(t0,x0) := lim

(t,x) → (t0,x0)

(t,x) ∈ D̃T

F (t,x), F
|B̃−

T
(t0,x0) := lim

(t,x) → (t0,x0)

(t,x) ∈ DT \D̃T

F (t,x).

The fact that F = 0 in DT \D̃T (since α̃
|DT \D̃T

= 0 from (SE.2)) yields F |
B̃−

T
= 0

and hence,
ˆ

B̃T

ϕ(α̃, α̃ũ)
|D̃T

· n
B̃T

ds =

ˆ

B̃T

(
F

|B̃+
T
− F

|B̃−
T

)
· n

B̃T
ϕds. (4.9)

Since the weak divergence of F given by −α̃f(α̃, c̃) belongs to L2(DT ), the normal
jump (F

|B̃+
T
−F

|B̃−
T
) ·n

B̃T
is zero. Consequently, (α̃, α̃ũ)

|D̃T
·n

B̃T
= 0 on B̃T . Then,

the fact that α̃
|D̃T

> 0 on B̃T , Proposition 4.7, and Remark 4.8 yield

∂tγ̃ω · n
|Γ̃(t)

= ũ
|Γ̃(t)

· n
|Γ̃(t)

. (4.10)
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Since γ̃ω(0, ·) = γω(0, ·), (4.10) yields D̃T = DT . Choose ϕ̃ ∈ C∞
c (DT \({T}×Ω(T ))).

Define ϕ ∈ C∞
c ([0, T ) × Ωℓ) such that ϕ = ϕ̃ in DT . Since D̃T = DT and α̃ = 0 on

D\DT , (4.10) yields

ˆ

DT

(α̃, ũα̃) · ∇(t,x)ϕ̃ dt dx+

ˆ

Ω(0)
ϕ̃(0,x)α0(x) dx+

ˆ

DT

α̃f(α̃, c̃)ϕ̃ dt dx

=

ˆ

BT

ϕ̃(α̃, ũα̃) · nBT
ds.

Therefore, α̃|DT
satisfies (4.3). The conditions on ũ|DT

, p̃|DT
, and c̃|DT

follow from
Definition 4.3.

Remark 4.10. The properties that α ∈ BV (DT ) and α̃ ∈ BV (DT ) are necessary in the proof
of (ET.a) and (ET.b), respectively so that the boundary values in (4.8) and (4.9) are well defined
in sense of traces (see Theorem 1 [12, p. 177]).

5 Numerical scheme

5.1 Discretisation

Here, we consider for simplicity that the spatial dimension is equal to 2. The temporal domain
[0, T ] is uniformly partitioned into N intervals, Tn = (tn, tn+1), with δ = tn+1 − tn for n =
0, . . . , N − 1, where t0 = 0 and tN = T . Let T = {Kj}j=1,...,J be a conforming Delaunay
partition of the domain Ωℓ into triangles. The following notations will be followed in the sequel.
For i, j = 1, . . . , J ,

• zj : centroid of the Kj , aj : area of the Kj ,

• E(j): set of all triangles sharing a common edge with Kj ; V(j): set of all vertices of a
triangle Kj ,

• eji: common edge between triangles Kj and Ki; mji: mid point of eji; nji: unit normal
to the edge eji pointing from the triangle Kj ; ℓji: length of eji,

• V = (vj)j=1,...,M : collection of vertices of triangles in T ,

• Be: set of all boundary edges in T ; and BT : set of all boundary triangles.

Definition 5.1 (Discrete average). For any real valued function f on R
2, define the discrete

average of f on the triangle Kj by {{f}}Kj
:=

∑
vi∈Vj

f(vi)/3, where j = 1, . . . , J .

The following aspects need to be considered when choosing a proper triangulation for Ωℓ.

5.1.1 Mesh-locking effect

We use a finite volume scheme to approximate the hyperbolic conservation law (2.1a), and
it is a well-known fact that finite volume solutions exhibit the mesh-locking effect, see [13]
and references therein. That is, the computed solution is preferentially oriented in accordance
with the orientation of the triangulation. Further, the domain Ω̃(t) obtained from (SE.1) in
Definition 4.4, depends on α̃. Therefore, the mesh-locking effect in α̃ at the discrete level affects
the accuracy of Ω̃, and thus other variables as well. This error propagates at each time step in a
compounding fashion. One way to eliminate this problem is to use a very refined triangulation,
but this increases the computational cost. The natural and cost-effective way is to use an
unstructured and random triangulation. Randomness avoids any particular orientation of the
triangles and thus eliminates mesh-locking from the numerical solution.
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5.1.2 Approximation of the initial domain

After triangulating Ωℓ, we approximate the initial domain Ω(0) by the set Ω0
h where,

Ω0
h := ∪{zj∈Ω(0)}Kj . (5.1)

However, this approximation of Ω(0) by Ω0
h is not accurate if the triangles are arranged in a

structured manner. We illustrate this in Figure 2, where Ω(0) - a circle centred at the origin
with unit radius is approximated by Ω0

h in different structured triangulations. Evidently, the
coarse triangulations in Figures 2(d) and 2(e) with 1024 and 4096 triangles, respectively give
a poor approximation of Ω(0). A reasonably good approximation is provided by the triangu-
lation in Figure 2(f); however, this triangulation contains 16,384 triangles, which makes the
computations expensive over multiple time steps. If the discrete approximation of Ω(0) is not
smooth enough, the discrete solution loses its symmetry as time evolves and this phenomenon
is observed in the work by M. E. Hubbard and H. M. Byrne [16].

(a) (b) (c)

-1 0 1

-1

-0.5

0

0.5

1

(d)

-1 0 1

-1

-0.5

0

0.5

1

(e)

-1 0 1

-1

-0.5

0

0.5

1

(f)

Figure 2: First row: Figures 2(a), 2(b) and 2(c) are structured triangulations of the domain
Ωℓ = (−5, 5)2. Triangulations in 2(d), 2(e), and 2(f), respectively contain 1024, 4096, and
16,384 triangles. Second row: Here, axes are limited to the region (−1, 1)2 (black box in the
first row) and corresponding approximations (green region) of an initial domain in the shape of
a circle centred at origin with unit radius.

We overcome the issues discussed in Subsections 5.1.1 and 5.1.2 by using an adaptive and random
triangulation. In particular, we employ the mesh generation of Ruppert’s algorithm put forward
by J. Ruppert [21]. Ruppert’s algorithm is based on Delaunay refinements, and produces quality
triangulations without any skinny triangles; that is every angle in a triangle is greater than a
preset value θmin. To obtain a good approximation of the domain Ω(0), we specify a finite
number of nodes N = (N i)1≤i≤N0 (in anti-clockwise order) on ∂Ω(0), join the neighbouring
nodes N i and N i+1 by a straight line segment denoted by N i,i+1, and let this collection of

13



straight edges be denoted by L (N ). This procedure gives a piecewise affine approximation of
∂Ω(0). Ruppert’s algorithm constructs a triangulation such that corresponding to each straight
edge N i,i+1 ∈ L (N ), there exists a triangle Kj such that N i,i+1 is an edge of Kj . These

(a) (b) (c)

(d) (e) (f)

Figure 3: First row: Figures 3(a), 3(b), and 3(c) are the unstructured (Ruppert-Delaunay)
triangulations of the domain Ωℓ = (−5, 5)2 corresponding to initial domains with circular, bullet,
and semi–annular shapes, respectively. The triangulations in 3(a), 3(b), and 3(c), respectively,
contain 3492, 3642 and 4084 triangles. Second row: Here, axes are limited to the region (−1, 1)2

(black box in the first row) to display the initial approximations (green region) better.

aspects of Ruppert’s algorithm help us to obtain a good approximation of Ω(0) irrespective of
its shape. The fact that the algorithm uses reasonably few number of triangles is an added
advantage. In Figure 3, we show the approximation of Ω(0) by Ω0

h, where the triangulations
are obtained by Ruppert’s algorithm. The circular, bullet-shaped and semi-annulus shaped
domains, respectively shown in Figures 3(d), 3(e), and 3(f); are well approximated by the
corresponding triangulations. In each case, we require fewer than 4100 triangles to obtain a good
approximation of Ω(0) as opposed to 16, 384 triangles in the case of a structured triangulation
(see Figure 2(f)). This illustrates the economical advantage of Ruppert’s algorithm.

Next, we present the numerical scheme. We discretise (2.1a) using a finite volume method, (2.1b)-
(2.1c) using Lagrange P2 − P1 Taylor-Hood finite element method and (2.1d) using a backward
Euler in time and P1 mass lumped finite element method.

Definition 5.2 (Discrete scheme for the NUM model). Define

• α0
h by α0

h := α0
j on Kj, for j = 1, . . . , J , where α0

j :=
ffl

Kj
α0(x) dx.

• c0h by c0h|Kj
∈ P1(Kj) for j = 1, . . . , J , where c0h(vi) = c0(vi) for i = 0, . . . ,M .

• Ω0
h is given by (5.1).

14



Fix a threshold αthr ∈ (0, 1) and Ωℓ such that Ω0
h ⊂ Ωℓ. The function u0

h is obtained from (DS.c)
by taking n = 0. Construct a finite sequence of 4-tuple of functions (αn

h,u
n
h, p

n
h, c

n
h){1≤n≤N} on

Ωℓ such that for all 1 ≤ n ≤ N , (DS.a)–(DS.d) hold.

(DS.a) αn
h := αn

j on Kj for j = 1, . . . , J , where

1

δ
(αn

j − αn−1
j ) +

1

aj

∑

eji∈E(j)

ℓjiFn−1
ji

= (αn−1
j − αthr)

+(1− αn−1
j )bn−1

j − (αn
j − αthr)

+dn−1
j , (5.2)

where, Fn−1
ji is the upwind flux between the triangles Kj and Ki through the common

edge eji defined by
Fn
ji := (un

ji · nji)
+αn

j − (un
ji · nji)

−αn
i , (5.3)

un
ij = u

n
h(mji), b

n
j = {{(1+s1)c

n
h/(1+s1c

n
h)}}Kj

, and dnj = {{(s2+s3)c
n
h/(1+s4c

n
h)}}Kj

.
If eji ∈ Be, then we set αn

i to zero. This choice is justified since un
ji = 0, so any

choice of αn
i does not change the value of the flux.

(DS.b) Ωn
h is defined through the following process: starting from Ωn−1

h ,

(1) add all triangles Kj 6⊂ Ωn−1
h that have an edge on ∂Ωn−1

h and such that αn
j ≥ αthr;

(2) remove all triangles Kj ⊂ Ωn−1
h that have an edge on ∂Ωn−1

h and such that
αn
j < αthr;

(3) Steps (1) and (2) lead to a new domain U ; repeat (2) with U instead of Ωn−1
h

until all triangles Kj that have an edge on ∂U satisfy αn
j ≥ αthr, and define Ωn

h

as the resulting final set U .

(DS.c) Set the conforming finite element space of piecewise second degree polynomials from
Ωn
h to R

2 with homogeneous tangential component on ∂Ωn
h by

W n
h,0 :=

{
ϕn

h ∈ (C 0(Ωn
h))

2 : ϕn
h|Kj

∈ (P2(Kj))
2 ∀Kj ⊂ Ωn

h, ϕ
n
h|∂Ωn

h
· τ |∂Ωn

h
= 0

}
.

Set the conforming finite element space of piecewise linear polynomials from Ωn
h to R

and its subspace with homogeneous Dirichlet boundary condition on ∂Ωn
h by

Sn
h :=

{
vnh ∈ C

0(Ωn
h) : v

n
h|Kj

∈ P1(Kj) ∀Kj ⊂ Ωn
h

}
and

Sn
h,0 :=

{
vnh ∈ Sn

h , v
n
h|∂Ωn

h
= 0

}
.

Then,

un
h :=

{
ũn
h on Ωn

h,

0 on Ωℓ\Ωn
h

and pnh :=

{
p̃nh on Ωn

h,

0 on Ωℓ\Ωn
h,

where (ũn
h, p̃

n
h) ∈W n

h,0 × Sn
h,0 satisfies, for all ϕn

h ∈W n
h,0 and v ∈ Sn

h,0,

an1,h(ũ
n
h,ϕ

n
h)− an3,h(p̃

n
h,ϕ

n
h) = Ln

h(ϕ
n
h),

an2,h(p̃
n
h, v

n
h) + an3,h(v

n
h , ũ

n
h) = 0,
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with an1,h : W n
h,0 ×W n

h,0 → R, an2,h : Sn
h,0 ×W n

h,0 → R, an3,h : Sn
h,0 × Sn

h,0 → R and
Ln
h :W n

h,0 → R are defined by

an1,h(u,v) =

ˆ

Ωn
h

αn
h (2µ∇su : ∇sv + λdiv(u)div(v)) dx, (5.4)

an2,h(p, z) =

ˆ

Ωn
h

1− αn
h

kαn
h

∇p · ∇z dx,

an3,h(z,w) =

ˆ

Ωn
h

z div(w) dx, and

Ln
h(v) =

ˆ

Ωn
h

H (αn
h)div(v) dx. (5.5)

(DS.d) Define the finite dimensional vector space of piecewise constant functions

Sh,ML :=



wh : wh =

M∑

j=1

wjχK̃j
, wj ∈ R, 1 ≤ j ≤ M



 ,

where, K̃j is the convex polygon at the vertex vj defined by

K̃j =



x : x =

∑

{i :vj∈Ki}

λizi, 0 ≤ λi ≤ 1,
∑

i

λi = 1



 .

The mass lumping operator Πh : C 0(Ωℓ) → Sh,ML is defined by Πhw =
∑M

j=1w(vj)χK̃j
.

Then,

cnh :=

{
c̃nh on Ωn

h,

1 on Ωℓ\Ωn
h,

where c̃nh ∈ Sn
h satisfies c̃nh|∂Ωn
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h −Πhc

n−1
h

)
Πhv

n
h dx+ δ
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ˆ
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h

Qαn
h

1 + Q̂1Πhc
n−1
h

Πhc̃
n
hΠhv

n
hdx ∀vnh ∈ Sn

h,0. (5.7)

Remark 5.3 (Scheme for the NLM model). Step (DS.d) needs to be modified in the case of
numerical experiments for the NLM. In particular, we replace Ωn

h in (5.7) by Ωℓ = (−ℓ, ℓ)2

and c̃nh by cnh to incorporate the evolution of the nutrient in the entire domain DT . Now, the
boundary conditions are imposed on ∂DT , and represent the supply of nutrient through blood
vessels at the boundary of the domain.

Remark 5.4 (Determining Ωn
h). The step (DS.b) determines the tumour domain. The volume

fraction of tumour cells outside Ωn
h is numerically close to zero while it is significant on the

boundary of Ωn
h. That is the boundary of Ωn

h is the interface beyond which the cell volume
fraction reduces to a numerically small value. However, we allow the volume fraction of the
tumour cells to become close to zero in some internal parts of Ωn

h, and still remain as integral
parts of Ωn

h.
To ensure the stability of the finite volume discretisation of (2.1a), the time stepping used

in simulations must be chosen so that the CFL condition holds; as a consequence, the tumour
can only grow by one layer of triangles at each time step, which justifies the choice in Step
(1) in (DS.b). Additionally, in our simulations we noticed that multiple iterations of Step (2)
in (DS.b) are not required: after one iteration only, all the resulting boundary triangles have a
tumour volume fraction larger than αthr.
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Remark 5.5 (3D setting). The discrete schemes presented here in 2D for the NUM and NLM
models extend in a straightforward way to three-dimensional models, since they are based on
methods (finite volume, finite elements) that can be applied to 2D and 3D equations, and have
the same presentation in both dimensions.

Definition 5.6 (Discrete solution for the NUMmodel). The 4-tuple of functions (αh,δ,uh,δ, ph,δ, ch,δ)
defined by (αh,δ,uh,δ, ph,δ, ch,δ) := (αn

h,u
n
h, p

n
h, c

n
h) on Tn for 0 ≤ n ≤ N − 1, where the finite

sequence (αn
h,u

n
h, p

n
h, c

n
h){0≤n≤N−1} is obtained from Definition 5.2 is said to be the discrete so-

lution of the NUM model (2.1)–(2.3) with respect to the time discretisation (Tn)n=0,...,N−1 and
the triangulation T .

A few aspects of the numerical scheme need to be discussed briefly. For more details, the
reader may refer to [19].

5.1.3 Threshold value

The threshold value αthr ∈ (0, 1) plays an important role in obtaining accurate numerical
solutions. The finite volume method used in (DS.a) introduces significant numerical diffusion
while computing αn

h, due to upwinding of the fluxes. If we define the discrete domain Ωn
h as the

union of all triangle Kj with αn
h|Kj

> 0, the domain Ωn
h might be significantly larger than the

exact domain Ω(tn). Since the computation of un
h, p

n
h and cnh depends crucially on Ωn

h, the error
in Ωn

h affects the accuracy of these functions as well. Further, αn+1
h depends on un

h, p
n
h, and

cnh. So the error propagates over time steps, finally reducing the quality of numerical solutions
significantly. To avoid this, we compare αn

h with a small positive number, αthr. The tumour
boundary ∂Ωn

h is the polygonal curve constituted by the edges of triangles in T such that
αn
j ≥ αthr in the boundary triangles Kj internal to Ωn

h, and αn
j < αthr in every triangle external

to ∂Ωn
h. However, the triangles in Ωℓ\Ωn

h have volume fraction in the range (0, αthr). This
residual volume fraction causes a spurious growth from the term αf(α, c) in the right hand side
of (2.1a) and this effect is eliminated by modifying αf(α, c) to (α − αthr)

+f(α, c) in the right
hand side of (5.2).

5.1.4 Numerical methods

The volume fraction equation (2.1a) is a hyperbolic conservation law. Therefore, we use a
finite volume scheme with piecewise constant solutions on each triangle Kj . The piecewise
constant solutions αn

h have the added advantage of easy computation of the integrals in (5.4)–
(5.5). The Lagrange P2−P1 Taylor-Hood method ensures the stability of the solutions (un

h, p
n
h)

obtained from (DS.c); note that when αn
h approaches unity, (2.1b) and (2.1c) become a Stokes

system. Moreover, taking the values of un
h at the edge mid points facilitates a straight forward

computation of the numerical flux defined by (5.3). The backward in time Euler method ensures
the stability of the numerical solutions cnh obtained from (DS.d). The mass lumping P1 finite
element method and the Delaunay based triangulation are used to obtain the positivity and
boundedness (by unity) of cnh [24].

6 Numerical results

The tests conducted in this section are categorised into two sets, Set-NUM and Set-NLM,
corresponding to NUM and NLM models. The values of the parameters that remain the same
in Set-NUM and Set-NLM are tabulated in Table 2. The numerical values in Table 2 are
adapted from [3] in which a similar model in one spatial dimension is considered. Values of
the parameters Q and η depend on specific cases and are provided in the later experiments.
In all sets of experiments, the initial volume fraction is given by α(0,x) = 0.8 when x ∈ Ω0

h
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Parameter Value Parameter Value

δ 0.1 µ 1

s1, s4 10 λ -2/3

s2, s3 0.5 αthr 0.01

Q̂ 0 α∗ 0.8

Table 2: Dimensionless parameters used in the numerical experiments for Set-NUM and Set-
NLM.

and α(0,x) = 0 when x 6∈ Ω0
h and the time step δ is set as 0.1 (see Remark 5.4). In all

simulations, the images are represented in a large enough box that contains tumour domain
depicted therein well in its interior. The MATLAB code for NUM simulations can be found in
the URL https://github.com/gopikrishnancr/2D tumour growth FEM FVM.

6.1 Setting for NUM simulations (Set-NUM)

We simulate the evolution of tumours starting with initial domains of the shapes as in Fig-
ures 3(d)–3(f). In all the simulations, the dimension of the square Ωℓ is (−5, 5)2. The final time
is set at T = 20. The triangulations are as in Figures 3(a)–3(c).

In the simulations corresponding to Figure 4, we set Q = 0.5 and η = 1.
In Figure 4, we show the state of the variables: volume fraction, nutrient concentration,

negative pressure, and the momentum – defined as the product of the volume fraction and the
cell velocity vector field – at the time T = 20 from the top row to the bottom row, respectively.
The columns from the left to the right depict the evolution of a tumour initially seeded with
cells in the shape of a circle, bullet and semi-annulus, respectively.

6.2 Setting for NLM simulations (Set-NLM)

In Set-NLM tests, we study the evolution of a tumour that was circular initially. The dimension
of the square Ωℓ is (−5, 5)2 and the final time T = 30. We set Q = 0.01 and η = 2. It is
worthwhile to notice that we keep η to be the same inside and outside the tumour region for
simplicity. However, in a more generic situation, η will vary between the tumour region and
external medium. In this set of experiments, volume fraction and nutrient concentration are
solved in the entire spatial domain Ωℓ, while cell velocity and pressure are solved in Ωn

h at each
tn.
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Figure 4: Set-NUM: Rows one to four illustrate the volume fraction, nutrient concentration,
negative pressure, and cell momentum at T = 20, respectively. The variables in columns one to
three correspond to an initial domain, Ω(0), in the shape of a circle, bullet, and semi-annulus,
respectively.
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Figure 5: Set-NLM: Evolution of a tumour with a circular initial geometry. Rows one to
four illustrate the variables volume fraction, nutrient concentration, negative pressure and cell
momentum, respectively and columns one to three illustrate state of the variables at times
T = 10, 20, and 30, respectively.
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We set the boundary values of the nutrient concentration c as follows: c = 0 on y = 5
and x = 5, and c = 1 on y = −5 and x = −5. The initial nutrient concentration is given by
c0(0,x) = 0.

In Figure 5, the columns from the left to the right show the state of the variables at time
T = 10, 20 and 30, respectively. The rows from the top to the bottom represent, volume fraction,
nutrient concentration, negative pressure, and cell momentum vector field, respectively.

6.3 Discussion on numerical results

6.3.1 Set-NUM, effect of initial tumour shape

Numerical experiments in subsections 6.1 and 6.2 substantiate the beneficial aspects of the
discrete scheme (Definition 5.2) developed in Section 5. This scheme is able to simulate tumour
geometries with arbitrary shapes (see Figure 4). Firstly, we considered a tumour with unit
circular shaped initial geometry in Set-NUM and in this case, the initial volume fraction is
uniform and symmetric about the origin. The nutrient concentration at the boundary of the
tumour is unity throughout the simulation. Therefore, the tumour does not experience any
unbalanced force that disturbs its symmetry and we expect radially symmetric growth. The
numerical results in Figure 4(a), 4(d), 4(g), and 4(j) confirm this argument. It is clear that
the tumour is growing with radial symmetry as the volume fraction distribution in Figure 4(a)
indicates. However, such symmetry cannot be expected for the cases with asymmetric initial
geometries. This is corroborated by the numerical experiments with the bullet shaped and semi-
annular shaped initial geometry. In the case of a bullet shaped initial geometry, since much
of the volume fraction is distributed along the y-axis rather than along the x-axis, a natural
expectation is that the vertical dimension of the tumour is longer than the horizontal dimension,
which the numerical simulations show. The asymmetric growth in the case of the tumour with
semi-annular initial geometry arises in a different way. The convex side of the tumour with apex
at x = 1 grows normally outwards, while the non-convex side grows into the semi-annular gap
between y = −0.5 and y = 0.5, and x = 0 and x = 0.5 (see Figure 4(c) and 4(l)). As the tumour
proliferates and expands, it becomes more difficult for the nutrient to diffuse into the interior
region of tumour. The nutrient concentration distribution in Figures 4(d), 4(e), and 4(f) show
the decreasing value of concentration towards the interior of the tumour irrespective of the initial
geometry. The depletion of nutrient level inside the tumour causes cell necrosis and as result,
the extra-cellular fluid tends to fill the space generated. This is clearly reflected by the fact
that the fluid pressure is more negative (see Figures 4(g), 4(h), and 4(i)) towards the interior
of the tumour and hence the fluid flow direction is from outside to inside. The cell velocity
vector field shows the direction in which the cells are moving. When the initial geometry of
the tumour is circular, the cells move in a radial direction with roughly equal magnitude (see
Figure 4(j)). However, in the case of asymmetric initial geometries the cell velocity vector field
is also asymmetric (see Figures 4(k) and 4(l)).

6.3.2 Set-NLM, attraction towards oxygen source

The simulations for the Set-NLM test give interesting results. It can be observed from the
volume fraction at times 10, 20, and 30 that the tumour grows towards the south-west corner.
This affinity can be explained using the differential supply of the nutrient. The only source of
the nutrient for the tumour comes from the left and bottom boundaries of the square Ωℓ. As
Figures 5(d), 5(e) and 5(f) show, the nutrient diffuses from the left and the bottom boundaries
towards the tumour. The tumour starts to grow when this diffused nutrient reaches its vicinity.
From Figure 5(a), we see that the tumour has not grown, until T = 10, the time at which the
diffused nutrient just meets the tumour boundary. The tumour starts to grow after this time as
observed from Figures 5(b) and 5(c). The numerical values of Q and η are crucial in determining
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Figure 6: The evolution of volume fraction and nutrient concentration with η = 0.1 andQ = 0.01
in NLM. Observe that the cells undergo necrosis before the nutrient can reach the tumour.

(a) Q = 0.01 (b) η = 1.0

Figure 7: Variation of the tumour radius, ℓ(t) with respect to the time for different values of η
and Q.

the fate of the tumour. In fact, the diffusivity, η, which controls the ease of nutrient to diffuse
into the tumour and the surrounding medium needs to be high enough so that the nutrient is able
to reach the tumour vicinity before all the cells die. This situation occurs with numerical values
Q = 0.01 and η = 0.1. Here, the low value of η prevents the nutrient from reaching the tumour
cells in adequate time (see Figures 6(d)-6(f)), and as a result the volume fraction of the tumour
cells gradually decreases (see Figures 6(a)-6(c)). Moreover, this suggests that a higher value of η
facilitates faster tumour growth owing to faster diffusion of the nutrient, and is supported by the
numerical results in Figure 7(a). Here, the growth (set-NLM) of a tumour with circular initial
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geometry is studied, and we quantify the tumour size by the tumour radius, ℓ(t). Furthermore,
we see that the tumour size decreases as Q increases, indicated by Figure 7(b). We note that,
broadly speaking, increasing η and decreasing Q have a similar effect in producing a larger
tumour volume (see Figures 7(a)-7(b)). In this way, identifiability issues may be encountered
when estimating these two parameters from data that solely measures tumour size over time.
However, supplementing with additional data on oxygen perfusion through cancer tissue (see,
for example, [15]), we expect that both parameters could be estimated.

6.3.3 Handling topology changes of tumour

Another notable feature of scheme is that it can simulate tumour growth starting from highly
irregular initial geometries with multiple disconnected components. We consider growth of a
tumour initially having three disconnected components with irregular boundaries. The irreg-
ularity of the initial tumour geometry is shown in Figure 9(a). The cell volume fraction at
times T = 0, 5, 10, 20, 20, 30, and 40 is plotted in Figure 9. As the tumour grows the multiple
components merge and the tumour continues to grow as a single entity. The numerical scheme
is designed in such a way that intrinsic changes in the tumour geometry like the variation in the
number of connected components is seamlessly dealt with and the numerical results in Figure 9
support this. It can be observed from Figure 9(f) that a necrotic core of dead cells has devel-
oped owing to the nutrient starvation experienced at the tumour centre due to its large size.
The numerical scheme captures a broad spectrum of features as discussed previously for both
symmetric and asymmetric initial geometries. A key factor that helps to achieve this is the
implicit recovery of the boundary using the volume fraction. In the scheme it is not required to
follow the movement of each point in the boundary, which may result in overlapping of edges
and other similar complexities. Defining the interior of the tumour as the union of triangles
with active cell volume fraction eliminates these issues, thereby making the numerical scheme
versatile for a wide range of scenarios.

6.3.4 Grid orientation effect

It should be also noted that orientation of the triangulation has little effect in determining the
tumour radius. The numerical experiments in Figure 8 illustrate this. In these simulations,
three rotated versions (by angles 0, π/2 and π) of a random triangulation are used for Set-
NUM experiments, with an initial tumour in the form of a disk (this ensures that the rotated
triangulations remain suitable for this initial shape, as detailed in Section 5.1.2). The resulting
volume fraction profiles remain mostly circular, with slight effects of the rotations but no change
in the final tumour radius.

6.3.5 Using structured meshes

The use of a random Delaunay mesh is critical in obtaining good solutions that have minimal
mesh-locking. We present the evolution of the volume fraction of a tumour starting with a
circular initial geometry, simulated using structured triangulations with 1024, 4096, and 16,384
triangles in Figures 10(a)– 10(c), Figures 10(d)– 10(f), and Figures 10(g)– 10(i), respectively.
The final time is set as T = 20, and the time step is δ = 0.1. The initial geometry is circular (see
Figure 10(g)). As the triangulations become more refined, it can be observed that the tumour
becomes more radially symmetrical. This observation indicates the convergence of the discrete
solutions to the radially symmetric solution as the spatial discretisation factor approaches zero.
However, the tumour also becomes more squarish as time increases, as shown in Figure 10,
showing that, for a long time, an extremely fine structure triangulation would have to be used
to obtain a reasonable solution. Such refinement would come at a great cost, whereas the use
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Figure 8: Effect of orientation of the triangulation on tumour radius. In Figures 8(a)–8(c) the
triangulation is rotated anticlockwise by the angles ϑ = 0, π/2 and π radians. The corresponding
volume fraction profile at T = 20 with temporal discretisation factor δ = 0.1 is provided in
Figures 8(d)–8(f).
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(a) T = 0 (b) T = 5 (c) T = 10

(d) T = 20 (e) T = 30 (f) T = 40

Figure 9: Stages of cell volume fraction for tumour growth (NUM) with an irregular initial
shape having multiple initial components.

of a random mesh (with adaptation only to the initial shape) provides suitable solutions with
relatively few triangles.

6.3.6 Assessment of convergence

The convergence of the scheme, as the grid size is reduced, is clearly observable in the case of
random triangulations; see Figure 11. However, this convergence requires uniform refinements
of the mesh, because it depends on both on a Courant–Friedrichs–Lewy (CFL) and on an inverse
CFL relation, as demonstrated in [9]. These conditions take the form

Cicfl ≤ max
0≤n≤N

sup
Ωn

h

||un
h||2

δ

amax
︸ ︷︷ ︸

inverse CFL condition

≤

CFL condition︷ ︸︸ ︷
max

0≤n≤N
sup
Ωn

h

||un
h||2

δ

amin
≤ Ccfl, (6.1)

where Cicfl and Ccfl are positive constants, amax = maxj aj , amin = minj aj , ||·||2 is the
Euclidean norm; recall that aj is the area of triangle j. The temporal discretisation factor δ is
fixed by the smallest triangle through the CFL condition (6.1). With this δ, at each time step
the diffusion of tumour cells inside the larger triangles would not be sufficient to create a volume
fraction αn

h larger than the threshold, and the tumour would not expand. Such a situation is
avoided by the inverse CFL condition 6.1, which ensures a lower bound on numerical diffusion
on large triangles also. Nevertheless, the CFL and inverse CFL condition together restrict the
possible choices of temporal discretisation factor. Since Ruppert’s algorithm performs a fine
refinement on triangles near the boundaries of the initial domain and bounding box, and a
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T = 0

(a)

T = 10

(b)

T = 20

(c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Evolution of volume fraction with respect to time on structured triangulation. The
initial domain is a circle centred at origin with unit radius. Figures 10(a)– 10(c) are computed
using the triangulation in Figure 2(a), Figures 10(d)– 10(f) are computed using the triangulation
in Figure 2(b), and Figures 10(g)– 10(i) are computed using the triangulation in Figure 2(c).
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Figure 11: Convergence of cell volume fraction for Set-NLM with respect to the spatial discreti-
sation factor. The triangulations in Figures 11(a), 11(b), and 11(c) contains 1248, 2084, and
4996 triangles. The volume fractions for Set-NLM are computed at the time T = 20.

relatively coarser refinement on the triangles in between these two boundaries, it leads to a
refined triangulation with considerable difference in the sizes of triangles within. Therefore, in
the case of very fine refinements, it is better to consider a structured triangulation well adapted
to the initial condition, and then perturb the vertices of triangles randomly to remove the mesh-
locking effect (see Figures 11(a)–11(c)). It can be observed from Figures 11(d)– 11(f) that the
volume fractions are indeed converging with mesh refinement.

(a) (b)

Figure 12: Radially aligned triangulation - Figure 12(a) shows the triangulation on the domain
Ωℓ = (−5, 5)2 and Figure 12(b) shows an enlarged view of the first quadrant.

Mesh locking and loss of radial symmetry in the case of structured triangulations is not due
to the procedure using a threshold value to capture the boundary of a tumour. Instead, this is
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(a) T = 0 (b) T = 10 (c) T = 20

Figure 13: Evolution of volume fraction obtained from Set–NUM experiment on the radially
aligned triangulation in Figure 12(a).

a classical problem associated with the nature of triangulations and finite volume schemes (see
subsection 5.1.1 also). If the symmetry of a discrete solution is known a priori and we use a
triangulation that respects this symmetry, then the discrete scheme in Definition 5.2 preserves
this symmetry. For instance, consider the evolution of a tumour with an initial geometry of a
unit circle centred at the origin. Since the tumour is expected to evolve with a radial symmetry,
we use a triangulation wherein the triangles are aligned with concentric circles centred at the
origin (see Figure 12(a)). In this case, it can be observed from Figures 13(a)–13(c) that the
discrete volume fraction remains radially symmetrical. However, this method cannot be used in
the case of initial geometries like the bullet or semi–annular shape since the symmetry properties
of discrete solutions are not known a priori. In such cases, the most economically viable choice
is to resort to a random triangulation.

6.3.7 Influence of threshold value
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(a) Set–NUM: Q = 5 – solid lines, Q = 0.5 –
dashed lines, η = 1 – blue lines, and η = 0.1 – red
lines.
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(b) Set–NLM: Q = 0.01 – solid lines, Q = 0.5 –
dashed lines, η = 1 – blue lines, and η = 2 – red
lines.

Figure 14: Dependence of ℓ(T ), where T = 20 on αthr.

The choice of threshold value, αthr, influences the evolution of the tumour radius and hence,
by extension, the other variables. We cannot choose the threshold value to be too large or too
small. Such a choice will incur a cascading array of high errors on the tumour radius and other
variables as the time increases. A very small threshold value implies that the volume fraction
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is too small on triangles closer to the boundary, thus forcing the velocity–pressure system to be
singular. The variation of tumour radius at the time T = 20 with respect to the threshold value
over the range [0.005, 0.015] for Set–NUM and Set–NLM experiments is provided in Figure 14.
The radius varies by a maximum of about 15% for Set-NUM and 20% for Set-NLM as the
threshold value varies from 0.005 to 0.015. Therefore, deviation in the tumour radius with
respect to the threshold value is present. But, with a proper choice of the threshold value, it is
possible to minimise the error in the tumour radius from the exact value [19]. Moreover, one of
the main motivations for simulating cancer growth is perhaps not to get an extremely accurate
representation of the tumour radius, but more to study the effect of drugs; in this situation,
the simulation of the current model would serve as a baseline, to be compared with simulations
obtained with a model including said drug effect, and run using the same threshold value.

7 Conclusions

In this paper, a mathematically well-defined model is developed which can replicate the evo-
lution of an avascular tumour that grows from a variety of initial geometries. The equivalent
formulation in Section 4 and Theorem 4.9 yield a framework to design a numerical scheme that
does not require explicit tracking of the time-dependent boundary associated with the tumour.
The tumour domain is recovered as the union of all triangles in which the volume fraction of the
tumour is greater than a fixed threshold value. While implementing the scheme, a multitude of
factors, like the nature of triangulation and the threshold value need to be taken into account.
For instance, we illustrate by an example the mesh-locking effect associated with the use of
structured triangulations and the advantage of using a random triangulation. The numerical
results for both NUM and NLM models support the heuristic expectations and results from pre-
vious literature [3, 16]. The tests also illustrate the nutrient dependent growth of the tumour
as in Figure 5. In addition to this, the numerical scheme seamlessly deals with the complex
tumour geometries in Figure 9, including initially disconnected tumour groups that merge later
on. The numerical results justify the ability of the scheme to take care of different irregular
tumour geometries and topological structures, which in turn shows its practical applicability in
simulating tumour growth from real-time clinical data. As such, the work presented here could
be extended to quantify the effect of drug treatment on an evolving tumour.

Acknowledgement

The authors are grateful to Prof. Neela Nataraj, Indian Institute of Technology Bombay, India
for the valuable suggestions and help. The authors are grateful to Dr. Laura Bray, Queens-
land University of Technology, Australia and Ms Berline Murekatete, Queensland University of
Technology, Australia for helpful discussions and providing image data for the irregular tumour
depicted in Figure 9(a).

Data availability statement

The datasets – specifically, MATLAB code for NUM simulations – generated during and/or
analysed during the current study are available in the GitHub repository,
https://github.com/gopikrishnancr/2D tumour growth FEM FVM.

References

[1] R. P. Araujo and D. L. S. McElwain. A history of the study of solid tumour growth: The
contribution of mathematical modelling. Bull. Math. Bio., 66(5):1039–1091, 2004.

29



[2] S. Bauer and D. Pauly. On Korns first inequality for mixed tangential and normal boundary
conditions on bounded lipschitz domains in R

n. Ann. Univ. Ferrara Sez. VII Sci. Mat,
62(2):173–188, 2016.

[3] C. J. W. Breward, H. M. Byrne, and C. E. Lewis. The role of cell-cell interactions in a
two-phase model for avascular tumour growth. J. Math. Bio., 45(2):125–152, 2002.

[4] C. J. W. Breward, H. M. Byrne, and C. E. Lewis. A multiphase model describing vascular
tumour growth. Bull. of Math. Bio., 65(4):609–640, 2003.

[5] H. M. Byrne and M. A. J. Chaplain. Free boundary value problems associated with the
growth and development of multicellular spheroids. European. J. Appl. Math., 8(6):639658,
1997.

[6] H. M. Byrne, J. R. King, D. L. S. McElwain, and L. Preziosi. A two-phase model of solid
tumour growth. Appl. Math. Lett., 16:567–573, 2003.

[7] H. M. Byrne and L. Preziosi. Modelling solid tumour growth using the theory of mixtures.
Math. Med. Bio., 20(4):341–366, 2003.

[8] M. C. Calzada, G. Camacho, E. Fernndez-Cara, and M. Marn. Fictitious domains and
level sets for moving boundary problems. applications to the numerical simulation of tumor
growth. J. Comput. Phy., 230(4):1335–1358, 2011.

[9] J. Droniou, N. Nataraj, and G. C. Remesan. Convergence analysis of a numerical scheme
for a tumour growth model. ArXiv, abs/1910.07768, 2019.

[10] A. Ern and J. Guermond. Theory and Practice of Finite Elements. Applied mathematical
sciences. Springer-Verlag New York, 2004.

[11] L. C. Evans. Partial Differential Equations. American Mathematical Society, Providence,
Rhode Island, 1998.

[12] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions. CRC
Press, Inc., Florida, 2015.

[13] R. Eymard, C. Guichard, and R. Masson. Grid orientation effect in coupled finite volume
schemes. IMA J. Numer. Anal., 33(2):582–608, 2013.

[14] H. P. Greenspan. On the growth and stability of cell cultures and solid tumors. J. Theoret.
Bio., 56(1):229–242, 1976.

[15] D. R. Grimes, P. Kannan, D. R. Warren, B. Markelc, R. Bates, R. Muschel, and M. Par-
tridge. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue.
J. R. Soc. Interface, 13(116):20160070, 2016.

[16] M. E. Hubbard and H. M. Byrne. Multiphase modelling of vascular tumour growth in two
spatial dimensions. J. Theoret. Bio., 316:70–89, 2013.

[17] P. Macklin and J. Lowengrub. Nonlinear simulation of the effect of microenvironment on
tumor growth. J. Theoret. Bio., 245(4):677–704, 2007.

[18] J. M. Osborne and J. P. Whiteley. A numerical method for the multiphase viscous flow
equations. Comp. Methods Appl. Mech. Engg., 199(49-52):3402–3417, 2010.

[19] G. C. Remesan. Numerical solution of the two-phase tumour growth model with moving
boundary. In B. Lamichhane, T. Tran, and J. Bunder, editors, Proceedings of the 18th
Biennial Computational Techniques and Applications Conference , CTAC-2018, volume 60
of ANZIAM J., pages C1–C15, 2019.

30



[20] T. Roose, S. J. Chapman, and P. K. Maini. Mathematical models of avascular tumour
growth. SIAM Review, 49:179–208, 2007.

[21] J. Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh generation.
J. of Algor., 18(3):548–585, 1995.

[22] G. Scium, S. Shelton, W. G. Gray, C. T. Miller, F. Hussain, M. Ferrari, P. Decuzzi, and
B. A. Schrefler. A multiphase model for three-dimensional tumor growth. New J. Phy.,
15(1):015005, 2013.

[23] K. Tapp. Differential Geometry of Curves and Surfaces. Undergraduate Texts in Mathe-
matics. Springer International Publishing, 2016.
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Appendix

A Some classical definitions and results

We recall two classical results used in this article.

a. Theorem (Korn’s second inequality). [10, Theorem 3.78]. If Ω ⊂ R
d, where d =

2, 3 is a domain, then there exists a positive constant CK such that, for every v ∈ H1
d(Ω),

CK ||v||1,Ω ≤ ||∇sv||0,Ω + ||v||0,Ω.

b. Lemma (Petree-Tartar). [10, Lemma A.38]. If X, Y, and Z are Banach spaces,
A : X → Y is an injective operator, T : X → Z is a compact operator, and there exists
a positive constant C1 such that C1||x||X ≤ ||Ax||Y + ||Tx||Z , then there exists a positive
constant CPT such that CPT ||x||X ≤ ||Ax||Y .

c. Definition (Bounded variation). By the space BV (A), where A ⊂ R
d is an open set

we mean the collection of all functions u : A → R such that ||u||BV < ∞, where

||u||BV := sup

{
ˆ

A
u div(ϕ) dx : ϕ ∈ C

1
c (A;Rd), ||ϕ||L∞(A) ≤ 1

}
.
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