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ON HIGGS BUNDLES ON ELLIPTIC SURFACES

ROHITH VARMA

Abstract. Let π : X → C be a relatively minimal non-isotrivial elliptic
surface over the field of complex numbers, where g(C) ≥ 2. In this article,
we demonstrate an equivalence between the category of semistable parabolic
Higgs bundles on C, and the category of semistable Higgs bundles on X with
vanishing second Chern class, and determinant a vertical divisor.
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1. Introduction

Motivation and statement of results. Consider a relatively minimal elliptic
surface π : X → C over C, with χ(X) > 0. Let c1, . . . , cn be the set of points on C
where the fibration π has a multiple fiber of multiplicity mi respectively. The data
(C, c,m) := (C, c1, . . . , cn,m1, . . . ,mn) defines a 2-orbifold. It is well-known then
that we have a natural isomorphism of groups induced by π (see [7, Theorem 24,
p 189])

π1(X, ∗) ∼= πorb
1 (C, ∗) (**)

The orbifold fundamental group πorb
1 (C, ∗) is defined as follows: Recall the funda-

mental group π1(C − {c1, . . . , cn}, ∗) has 2g + n generators
α1, β1, . . . , αg, βg, γ1, . . . , γn subject to the relation

[α1, β1] · · · [αg, βg]γ1 · · · γn = 1.

The orbifold fundamental group πorb
1 (C, ∗) is then defined to be the quotient of

π1(C − {c1, . . . , cn}, ∗) by the smallest normal subgroup containing the elements
γmi

i . Thus, πorb
1 (C, ∗) is freely generated by the elements α1, β1, . . . , αg, βg, γ1, . . . , γn

subject to the relations

[α1, β1] · · · [αg, βg]γ1 · · · γn = 1, and γmi

i = 1.

A natural class of elliptic surfaces with positive Euler characteristic are the so called
1
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non-isotrivial elliptic fibrations. An elliptic surface π : X → C is called isotrivial,
if after passing to a finite cover B → C, the surface X ×C B is birational to a
product B × E, where E is a complex elliptic curve. An elliptic surface is called
non-isotrivial if it is not isotrivial.

Now the space of Jordan equivalence classes of representations of π1(X, ∗) in
GL(n,C) can be identified with the moduli space of S-equivalence classes of semistable
rank n Higgs bundles on X , with vanishing Chern classes from the work of Simpson
(see [17],[18]).
Similarly, the space of Jordan equivalence classes of representations of πorb

1 (C, ∗),
correspond to S-equivalence classes of parabolic rank n Higgs bundles on C. Here,
by Jordan equivalence we mean the equivalence relation on the space of represen-
tations given by identifying representations which have isomorphic Jordan-Holder
filtrations. The isomorphism (**) suggests a natural correspondence between these
moduli spaces. If we restrict our representations to unitary representations, then
the corresponding moduli spaces are that of S-equivalence classes of semistable
vector bundles on X with vanishing Chern classes, and S-equivalence classes of
parabolic vector bundles on C with parabolic degree 0 (see [13, 16, 12, 6]).
An algebraic geometric isomorphism between these moduli spaces was exhibited by
Stefan Bauer in [2] (see [3, 4, 9] for related questions).
In this paper, our aim is to establish a similar correspondence in the case of Higgs
bundles on non-isotrivial relatively minimal elliptic surfaces π : X → C with
g(C) ≥ 2.
Recall, a Higgs bundle on a variety Y , is a pair (V, θ) where V is a vector bundle
on Y and θ ∈ Hom(V, V ⊗ Ω1

Y ), which satisfies

θ ∧ θ = 0.

Coming to our situation, fix a polarization H on X and consider the following cat-
egories:

CvHiggs
X := The category of H-semistable Higgs bundles (V, θ) on X with vanishing

second Chern class and det(V ) a vertical divisor.

CParHiggs
(C,c,m) := The category of semistable parabolic Higgs bundles on C with par-

abolic structures above the points ci (with weights at ci belonging to 1
mi

Z∩ [0, 1)).
Our main result is the following

Theorem 1. There is a natural equivalence of categories CvHiggs
X and CParHiggs

(C,c,m) .

Strategy. Our strategy, is the outcome of an attempt at adapting the study in [2],
to the situation of Higgs bundles.
The category of parabolic bundles (Higgs) on a curve C, with genus atleast 2 is
equivalent to the category of bundles (Higgs) on ramified Galois covers, equivariant
for the action of the Galois group. Keeping this in mind, we consider an elliptic

fibration π̃ : X̃ → C̃ with natural morphisms q : X̃ → X and p : C̃ → C, such that

π ◦ q = p ◦ π̃.

We have further, q : X̃ → X is etale Galois. We also have p : C̃ → C is Galois with
the same Galois group as that of q.

Moreover, the fibration π̃ : X̃ → C̃ is a non-isotrivial, relatively minimal elliptic
surface with no multiple fibers. We show that to prove Theorem 1 it is enough
to construct an equivalence of categories of semistable equivariant (for the Galois

group) Higgs bundles on X̃ and equivariant Higgs bundles on C̃.
Subsequently, we argue that the equivariant situation as above can be derived from

Theorem 1 applied to the fibration π̃ : X̃ → C̃.
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So we are reduced to proving Theorem 1 in the case of fibrations with no multiple
fibers.

Now in the case when the fibration has no multiple fibers, we show that every
semi-stable Higgs bundle (V, θ) on X with vanishing second Chern class and deter-
minant vertical is the pull back of a semistable Higgs bundle on C. To that end,
we first observe that it is enough to show that the bundle V is the pull-back of a
bundle from the curve C. To see this let W be a vector bundle on C and consider
the bundle U := π∗(W ) on X . We use Lemma 2 and projection formula to conclude

H0(X, End(U,U)⊗ Ω1
X)) = H0(C, End(W,W ) ⊗KC).

Hence, every Higgs field on the bundle π∗(W ) is the pull-back of a Higgs field on
W .
To show V is the pull-back of a bundle on C, it is enough to show its restriction to
every fiber is trivial. We reduce this further to showing that, the restriction of V to
the generic fiber of π is trivial. The generic fiber (possibly after a base extension) of
π is an elliptic curve. Now we can use the beautiful classification results on vector
bundles over elliptic curves due to Atiyah (see [1]), to study the generic restriction
of V . This theme of understanding the global picture by studying the generic fiber
is something which we use repeatedly in this article.

Related work and further comments. The assumption g(C) ≥ 2 has been used
only to ensure the existence of Galois covers with prescribed ramification points and
ramification indices. Hence, the results of section 2 and subsection 3.1 are valid
without this assumption. In particular, our proofs are valid in the case of a fibration
with no multiple fibers without any assumption on the genus of C.

In [15, section 5], there is a discussion on the correspondence relating semistable
Higgs bundles on elliptic surfaces with vanishing Chern classes and semistable para-
bolic Higgs bundles (parabolic degree 0) on the curve. But the discussion is limited
to the case when the vector bundle underlying the Higgs bundle has a two step
Harder-Narasimhan filtration.
In [10, Theorem 14.5], the authors consider the 1 − 1 correspondence between the
moduli space of semistable Higgs bundles on X with vanishing Chern classes and
the moduli space of semistable parabolic Higgs bundles on the curve C of parabolic
degree 0, arising as a consequence of the work of Simpson[17, 18]. This correspon-
dence is at the level of topological spaces. The question of establishing an algebraic
geometric correspondence between these moduli spaces is proposed in [10], as a
remark following the above mentioned theorem. We are able to show such an iso-
morphism (see corollary 2) in the case of non-isotrivial elliptic surfaces.

Further, as in [2] our study is not restricted to the situation of vanishing Chern
classes. We feel that results of this article must be true for isotrivial elliptic surfaces
with positive Euler characteristic as well, but we do not know how to prove it.

Acknowledgement. The author wishes to thank his adviser Dr Vikraman Balaji
for his constant support and encouragement. He also would like to thank Dr CS
Seshadri for taking interest in this work.

2. Preliminaries

All varieties considered are over the field of complex numbers unless mentioned
otherwise.
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2.1. Elliptic surfaces. An Elliptic surface is a fibered surface
π : X → C where the general fibers are genus 1 curves and X , C are a smooth
projective surface and a smooth projective curve over C respectively. We call an
elliptic surface as above relatively minimal if there are no exceptional curves (curves
with self intersection number −1) on the fibers.
Just to be consistent with the definition of vertical bundles (Definition 1) defined
in the next subsection, we call a divisor D vertical, if D is linearly equivalent to a
divisor of the form ΣiriFi where ri ∈ Q and Fi for every i is a divisor corresponding
to a fiber at some point of C. We call a divisor D vertically supported if Supp(D)
maps to a proper closed subset of C under π. A vertically supported divisor D
always satisfies D2 ≤ 0 and is vertical precisely when D2 = 0. For two divisors
D1 and D2, we write D1 ≡ D2 if D1 is numerically equivalent to D2. The vertical
divisors corresponding to various fibers are all numerically equivalent. Hence as
far as intersection theory is concerned, we may work with a fixed fiber, say we
denote by F . The sheaf R1π∗(OX) is a line bundle on C and we have in the case
of relatively minimal elliptic surfaces

χ(X) = 12deg(L)

where L denotes the dual of the line bundle R1π∗(OX) on C. We have the canonical
bundle formula due to Kodaira (see [7, Theorem 15, p 176])

KX
∼= π∗(KC ⊗ L)⊗OX(Σi(mi − 1)Fi).

where Fi are effective divisors on X whose G.C.D of the coefficients of the compo-
nents are 1 and the multiple fibers of π are precisely of the form miFi.
Hence, on a relatively minimal elliptic surface, we have the canonical divisors of X
are vertical divisors. If Y → C is an elliptic surface which is not relatively mini-
mal, then assume after blowing down the exceptional curves {E1, . . . , Er} we get a
relatively minimal model say X . We then have

KY
∼= KX ⊗OY (E1 + . . .+ Er).

Hence, KY can be represented by vertically supported divisor. In particular, we
have for any elliptic surface X → C,

KX .F = 0.

We will need the following characterization of vertical divisors in the subsequent
sections

Lemma 1. Assume χ(X) > 0. Then for a divisor D,

D vertical ⇐⇒ D.F = 0 and D2 = 0

Proof. D vertical clearly implies

D.F = 0 = D2.

Conversely, assume D.F = 0 and D2 = 0. Let H be an ample divisor on X . Choose
a pair of integers m,n such that (mD+nF ).H = 0. Since now (mD+nF )2 = 0, we
get from Hodge index theorem on surfaces that mD + nF ≡ 0 and D ≡ rF where
r ∈ Q. If D is vertically supported then D = aF , with a ∈ Q. This is the case if
D is effective. Hence, to conclude the proof it is enough to show Dl = D + lF is
effective where l ∈ N as Dl satisfies the hypothesis of the Lemma and the preceding
discussion applied to Dl says Dl is vertical and hence so do D = Dl − lF . To see
this choose l >> 0, so that (Dl).H > (KX).H . Then

H2(X,OX(Dl)) = H0(X,Hom(Dl,KX))∗ = 0.
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Applying Riemann-Roch theorem, we see that

H0(X,OX(Dl)) = H1(X,OX(Dl)) + χ(OX) > 0

and hence we have Dl is effective. �

The following Lemma is necessary for our study

Lemma 2. (see [14]) Let X be a non-isotrivial elliptic surface with no multiple
fibers. Then the natural map

KC → π∗(Ω
1
X)

is an isomorphism.

Proof. Consider the short exact sequence

0 → π∗(KC) → Ω1
X → Ω1

X/C → 0.

Applying π∗, we get the following long exact sequence

0 → KC → π∗(Ω
1
X) → π∗(Ω

1
X/C)

σ
→ KC ⊗R1π∗(OX)

The sheaf π∗(Ω
1
X/C) is a rank 1 sheaf on C, while KC⊗R1π∗(OX) is a rank 1 locally

free sheaf. The map σ restricted to the generic fiber is the kodaira-spencer map
which is non-zero if X is assumed non-isotrivial. Hence the kernel of σ is precisely
π∗(Ω

1
X/C)Tor = π∗((Ω

1
X/X )Tor). So we have

0 → KC → π∗(Ω
1
X) → π∗((Ω

1
X/C)Tor) → 0.

Now from [11, Proposition 1] we getH0(C, π∗((Ω
1
X/C)Tor)) = 0. But as π∗((Ω

1
X/C)Tor)

is a torsion sheaf on C, it has to be the 0-sheaf since a non-zero torsion sheaf on a
curve always has sections. Hence we have

KC

∼=
→ π∗(Ω

1
X).

�

2.2. Vertical Bundles. We keep the assumption that π : X → C is a non-
isotrivial elliptic fibration. Denote by K, the function field k(C) of C. For a
vector bundle V on X , we denote by VK the bundle on XK := X×C spec(K) given
by pull back of V to XK through the natural map XK → X . Similarly, for an
extension L/K of fields we denote by XL := X ×C spec(L) and VL the bundle on
XL given by the pull back of V to XL through the morphism XL → X .
Let us recall the definition of Vertical Bundles as defined in [2, Definition 1.3,p 512]

Definition 1. A rank n vector bundle V on X is called vertical, if V has a filtration

(0) = V0 ⊂ V1 ⊂ . . . ⊂ Vn = V.

by sub-bundles Vi, with Vi/Vi−1
∼= OX(Di) where Di are vertical divisors.

The main result of this subsection is the following proposition which relates
vertical bundles V on X and VK .

Proposition 1. Let V be a vector bundle with c2(V ) = 0 and D = det(V ) is a
vertical divisor. Then, V is vertical if and only if VK is semistable.

Proof. If V is vertical, then clearly VK is semistable. Now for the converse, let K̄/K
be an algebraic closure of K. Consider the elliptic curve XK̄ and vector bundle
VK̄ on XK̄ . From assumption we have VK̄ is semistable with trivial determinant.
From Atiyah’s classification results on vector bundles on elliptic curves (see [1]), we
have VK̄

∼= ⊕iLiImi
where Li are degree 0 line bundles on XK̄ and Im denotes the

unique indecomposable bundle on XK̄ of rank m and trivial determinant. Let L/K
denote a finite Galois extension so that for every index i Li ∈ Pic0(XL). We then
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have a decomposition of VL as ⊕iLiImi
. Let f : C̃ → C be the finite Galois cover

of C corresponding to L/K. Choose a minimal resolution X̃ of X ×C C̃. Since X

was non-isotrivial, the same holds true for X̃ and hence χ(X̃) > 0. Denote by Ṽ ,

the pull back of V to X̃. The bundle Ṽ also satisfies c2(Ṽ ) = 0 and D̃ = det(Ṽ ) is

a vertical divisor with D̃2 = 0. We have ṼL = VL and hence has a filtration by the
line bundles Li. We can extend this filtration on ṼL to a filtration by torsion free
subsheaves on Ṽ ,

(0) = Ṽ0 ⊂ . . . Ṽn−1 ⊂ Ṽn.

such that Ṽi/Ṽi−1
∼= OX(Di)⊗ IZi

. Using the additivity of Chern classes, we get

ΣiDi = D̃, (2.1)

Σi<jDiDj + lt(Zi) = 0. (2.2)

Squaring equation(2.1) and using the fact that D̃2 = 0, we get

Σi<jDiDj = −
1

2
ΣiD

2
i . (2.3)

Substituting equation (2.3) in equation (2.2), we get

Σilt(Zi) =
1

2
ΣiD

2
i . (2.4)

Since by assumption DiF = 0, we have

D2
i ≤ 0, ∀i.

On the other hand we have

lt(Zi) ≥ 0, ∀i.

Hence from equation (2.4) we get the only possibility is

lt(Zi) = 0 and D2
i = 0.

Now from Lemma 1 we can conclude Di are vertical divisors for all i. In particular

Li
∼= OXL

∀i.

Now consider the short exact sequence

0 → L0
∼= OXL

t0→ VL → VL/L0 → 0.

Let G := Gal(L/K) be the Galois group. We have G acts on VL and hence on the
sections H0(XL, VL). Now replace t0 by Tr(t0) = Σg∈Gg(t0) and we can assume
t0 is G-invariant and hence L0 is a G-invariant trivial sub-bundle of VL. Hence by
Galois descent we have a section s0 : OXK

→ VK with t0 being the induced section
of VL via base change and VL/L0

∼= (VK/s0(OXK
))L. Replacing now VL by VL/L0

and t0 by t1 : L1
∼= OXL

→ VL/L0 and repeating the argument we see that VK
has a filtration by sub-bundles with sub-quotients all trivial line bundles. Extend
this filtration to a filtration of V and as in the case of Ṽ , we see that V is vertical.
Thus we have proved the proposition. �

Let us recall now the definition of Higgs bundles on a projective variety Y . A
Higgs bundle on Y is a pair (V, θ), where V is a vector bundle on Y and θ : V →
V ⊗ Ω1

Y is a homomorphism with

θ ∧ θ = 0.

We fix a polarization H on Y and let r be dim(Y ). We say Higgs bundle (V, θ) on
Y is semistable if for every subsheaf W ⊂ V preserved by θ (i.e θ(W ) ⊂W ⊗Ω1

Y ),
we have

c1(W ).Hr−1/rank(W ) ≤ c1(V ).Hr−1/rank(V ).
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Now consider the case when Y is a surface. For a vector bundle V on Y , Denote by
∆(V ) the number (r − 1)c1(V )2 − 2rc2(V ) which is called the Bogomolov Number
of V . If a vector bundle V admits a Higgs field φ so that (V, φ) is a semistable
Higgs bundle on Y (with respect to H), then we have the Bogomolov inequality

∆(V ) ≤ 0.

Further if ∆(V ) = 0, then the pair (V, φ) is semi-stable with respect to any other
polarization on Y [5, Theorem 1.3]. Hence now as a corollary of Proposition 1 we
have the following generalization of [2, Lemma 1.4, p 512].

Corollary 1. If (V, θ) is a semistable Higgs bundle with c2(V ) = 0 and D = det(V )
vertical, then V is a vertical bundle.

Proof. From Proposition 1 it is enough to show VK is semistable. If VK is not
semistable, Then since XK is a genus 1 curve, The H-N filtration of VK induces a
decomposition VK = ⊕j

i=1Wi where Wi is the destabilizing subsheaf of VK/Wi−1 if
we set W0 = (0). In particular each Wi is semistable and

deg(W0) > . . . > deg(Wj).

Now (Ω1
X)K is a rank 2 vector bundle on XK which is an extension of OXK

by itself.
In particular (Ω1

X)K is semistable of degree 0 and so the bundles Wi ⊗ (Ω1
X)K are

semistable with deg(Wi ⊗ (Ω1
X)K) = 2deg(Wi) and rk(Wi ⊗ (Ω1

X)K) = 2rk(Wi).
We have then

µ(W0) = deg(W0)/rk(W0) > µ(Wi ⊗ (Ω1
X)K) = deg(Wi)/rk(Wi), i ≥ 2.

So

H0(XK , Hom(W0,Wi ⊗ (Ω1
X)K)) = (0), ∀i ≥ 2.

Hence, we have θK(W0) ⊆W0⊗ (Ω1
X)K . Now extend W0 to a torsion free sub-sheaf

W ⊂ V with V/W torsionfree as well. Since θK preserves W0, the Higgs field θ
preserves the subsheafW . On the other hand, as we have c1(W ).F = deg(W0) > 0,
for a suitable m >> 0 and the polarisation H +mF , the slope W exceeds that of
V . But since ∆(V ) = 0, this will contradict the stability of (V, θ) with respect to
H . �

Before we end this section we would like to address two natural questions regard-
ing vertical bundles. The first one is about when a sub-sheaf of a vertical bundle
V is itself vertical. Clearly such a sub-sheaf N ⊂ V satisfies c1(N).F = 0. We will
see below [Lemma 3] that this condition is in fact sufficient. The other question
is specific to the case when π has no multiple fibers. In this situation there is a
natural class of vertical bundles, which are the pull backs of bundles on C to X .
If V is such a bundle then we have VK = O⊕r

XK
where r = rk(V ). Once again this

condition turns out to be sufficient [Lemma 4].

Lemma 3. Let V be a vertical bundle and N ⊂ V a sub-sheaf with torsion free
quotient V/N . Then, N is vertical precisely when c1(N).F = 0.

Proof. Since N and V/N are torsion free, we have NK and (V/N)K are locally free
on XK . Further by assumption both are of degree 0. On the other hand as V is
vertical, VK ∼= ⊕iIk−i, where Iki

is the unique indecomposable bundle of rank ki
and trivial determinant. Hence both NK and (V/N)K also admit filtrations where
the successive quotients are trivial line bundles. Any such filtration on NK and
(V/N)K can be extended to a filtration on N and V/N with successive quotients
all of rank 1 and of the form OX(Di) ⊗ IZi

where Di is a vertically supported
divisor and Zi is a closed set of points on X . But this filtration is also a filtration
on V . Now an argument involving Chern classes as in the proof of Proposition 1
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gives us Zi = ∅ for every i and Di are vertical divisors. Hence both N and V/N
are vertical.

�

Lemma 4. Assume π has no multiple fibers. Then a vertical bundle V is iso-
morphic to π∗(W ) where W is a bundle on C if and only if VK = O⊕r

XK
where

r = rk(V ).

Proof. Let V be a vertical bundle with VK = O⊕r
XK

. Since by assumption π has
no multiple fibers, a line bundle corresponding to a vertical divisor restricts to the
trivial line bundle on any fiber of π. Hence V restricted to any fiber is an iterated
extension of trivial line bundles. In particular if for c ∈ C, we denote by Xc by
the fiber (scheme theoretic) of π above c and Vc the restriction V |Xc

, then as
h0(Xc,OXc

) = 1, we have
h0(Xc, Vc) ≤ r.

The equality occurs precisely at the points c ∈ C where Vc is the trivial rank r bun-
dle on Xc. Now from semi-continuity principle the set Z = {c ∈ C | h0(Xc, Vc) = r}
is a non-empty closed subset of C. But on the other hand we have if ζ ∈ C, the
generic point of C, then h0(Xζ , Vζ) = h0(XK , VK) = r. Hence ζ ∈ Z and thus
Z = C. Thus V restricts to the trivial rank r bundle on every fiber and conse-
quently V ∼= π∗(π∗(V )). �

3. Main Theorem

Let π : X → C denote a non-isotrivial elliptic fibration possibly with multiple

fibers and χ(X) > 0. Fix a polarization H on X . Denote by CvHiggs
X , the cate-

gory whose objects are (H-)semistable Higgs bundles (V, θ) on X with c2(V ) = 0,
det(V ) a vertical divisor, and morphisms being Higgs bundle morphisms. Let
c := {c1, . . . , cl} be the points on C where the fibers of π are multiple. Let the
multiplicities of these fibers be m := {m1, . . . ,ml} respectively. Recall the notion
of a parabolic vector bundle on C. A parabolic vector bundle on C with a parabolic
structure at a point c ∈ C, consists of a vector bundle V , together with a Flag

F •(Vc) := (0) ⊂ F 1(Vc) ⊂ F 2(Vc) ⊂ . . . F r(Vc) = Vc.

and weights αi ∈ R assigned to each subspace F i(Vc) such that

0 < α1 < . . . < αr ≤ 1.

To such a parabolic vector bundle (V, F •(Vc), {αi}) we can associate a real number
called the parabolic degree given by

Pardeg(V ) := deg(V ) + Σiαidim(F i(Vc)/F
i−1(Vc)).

In general, if there are parabolic structures on more than one point, then the
definition of parabolic degree has to be appropriately modified. There is a natural
induced parabolic structure on every sub-bundle of V and we have an obvious
notion of semistability (stability) using the parabolic degree instead of the usual
degree. Now we also can define a parabolic Higgs bundle. Since in literature there
are two different notions of a Higgs field, we want to specify what we mean by a
parabolic Higgs field. For a parabolic vector bundle (V, F •(Vc), {αi}) as defined
above, a parabolic Higgs field is a morphism

φ : V → V ⊗KC(c)

such that we have
φ(F i(Vc)) ⊆ F i−1(Vc)⊗KC(c).

Now we can define semistability for a parabolic Higgs bundle (V, F •(Vc), φ) as in
the usual case by restricting the slope condition to sub-bundles preserved by the
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Higgs field φ. The definition of parabolic Higgs bundles in the case of parabolic
structures at more than one point is the same as above except we have to replace
KC(c) by KC(c1+ . . .+cl), where ci are the parabolic points. Assume from now on
that g(C) ≥ 2. Further, assume the weights associated with the filtration F •(Vcj )

at cj all are rational and lie in 1
mj

Z ∩ [0, 1]. Let CParHiggs
(C,c,m) denote the category of

parabolic semistable Higgs bundles with weights as described above. The following
theorem is the main result of this article

Theorem 1. There is a natural equivalence of categories CvHiggs
X and CParHiggs

(C,c,m) .

Since we have assumed g(C) ≥ 2, there exists a Galois cover p : C̃ → C with
Galois group denoted by Γ and the local ramification groups above cj being the

cyclic group Z

mjZ
for every j. Let CΓ−Higgs

C̃
denote the category of Γ-equivariant

Higgs bundles on C̃. We then have a natural equivalence of categories

pΓ∗ : CΓ−Higgs

C̃

∼=
→ CParHiggs

(C,c,m)

Now consider the commutative diagram

X̃
q

−−−−→ X
yπ̃

yπ

C̃
p

−−−−→ C

where X̃ is a minimal desingularization of X ×C C̃ (see [8, Section 1.6,p 95-108]).

We have π̃ : X̃ → C̃ is a relatively minimal non-isotrivial elliptic surface with no
multiple fibers. Further, we have q is an etale Galois cover with Galois group Γ.

Denote by CΓ−vHiggs

X̃
, the category of Γ-semistable Γ-equivariant Higgs bundles

on X̃ with c2 = 0 and c1 vertical. From Galois descent, we have an equivalence of
categories

q∗ : CvHiggs
X

∼=
→ CΓ−vHiggs

X̃
.

Hence to prove the theorem it suffices to construct a natural equivalence between

the categories CΓ−vHiggs

X̃
and CΓ−Higgs

C . To that end we will first prove the theorem

in the case when the elliptic fibration has no multiple fibers.

3.1. Proof of Theorem 1 in the case of no multiple fibers. Denote by CHiggs
C ,

the category of semistable Higgs bundles on C. we have a natural map

dπ : π∗(KC) → Ω1
X

Now for a Higgs bundle (W,φ) on C, let V = π∗(W ). Then we denote by dπ(φ) ∈
Hom(V, V ⊗Ω1

X) the composition (IdV ⊗dπ)◦(π∗(φ)). Clearly dπ(φ) : V → V ⊗Ω1
X

is a Higgs field on V . Now we have the following Lemma

Lemma 5. If (W,φ) is a semistable Higgs bundle on C, then for any chosen po-
larisation on X, the Higgs bundle (V, dπ(φ)) is semistable on X

Proof. Since ∆(V ) = 0, it is enough to prove that there exists a polarization with
respect to which (V, dπ(φ)) is semistable. Assume the contrary and let H be a
polarization for which the pair (V, dπ(φ)) is unstable. Since the bundle VK is trivial
and hence semistable, for any sub-sheaf of N ⊂ V , we have c1(N).F ≤ 0. Hence,
changing the polarization from H to H +mF for m >> 0, either turns (V, dφ(φ))
into a semistable Higgs bundle in which case we are done or else the maximal
destabilizing sub-sheaf Vmax satisfies c1(Vmax).F = 0. But as VK is trivial and
(Vmax)K is a degree 0 sub-bundle of VK , the only possibility is (Vmax)K is itself
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trivial. Hence so do (V/Vmax)K . Now from Lemma 3 and Lemma 4 we have
Vmax

∼= π∗(π∗(Vmax)). Hence, π∗(Vmax) is a sub-bundle of W of rank same as that
of Vmax. Further, we have

µ(π∗(Vmax)) =
c1(Vmax).H/F.H

rk(Vmax)
> µ(W ) =

c1(W ).H/F.H

rk(W )
.

and π∗(Vmax) is invariant under φ, which contradicts semistability of (W,φ). Hence,
(V, dπ(φ)) is semistable for the polarization H . �

Thus, we have a well defined functor

π∗ : CHiggs
C → CvHiggs

X

given by

(W,φ) 7→ (π∗(W ), dπ(φ)).

From Lemma 2 we have the natural map KC → π∗(Ω
1
X) is an isomorphism. Hence,

if V = π∗(W ) for W a bundle on C, then from projection formula every Higgs field
θ on V is of the form dπ(φ) for φ a Higgs field on W . Hence, the functor π∗ is full
and faithful. We will see below that π∗ is essentially surjective as well and hence
is an equivalence of categories, which proves Theorem 1 when π has no multiple
fibers.

Remark 1. The statement for line bundles (even without the assumption of non-
isotriviality) is a consequence of Hodge theory for complex surfaces. Recall we have
under the assumption of χ(X) > 0,

g(C) = h1,0 = dimC(H
1(X,OX)) = dimC(H

0(X,Ω1
X)) = h0,1.

On the other hand, the dimension of the subspace H0(X, π∗(KC)) ⊆ H0(X,Ω1
X) is

g(C) as well. Hence, we have the equality

H0(X, π∗(KC)) = H0(X,Ω1
X).

In particular, every 1-form on X is the pull back of a form on C. Now a rank 1
Higgs bundle of the form in the theorem above is a pair (L, θ) where L is isomorphic
to a line bundle of the form OX(D) with D vertical (hence in the case of no multiple
fibers, D is the pull back of a divisor on C) and θ is a 1-form. So the statement
holds true for rank 1 Higgs bundles as in the theorem.

Since we have assumed X to be non-isotrivial, we have from Lemma 2, π∗(Ω
1
X)

is the line bundle KC on C. Hence from semicontinuity principle, we have

dimK(H0(XK , (Ω
1
X)K)) = 1.

Consider now the restriction of the short exact sequence

0 → π∗(KC) → Ω1
X → Ω1

X/C → 0.

to XK . Since (π∗(KC))K ∼= OXK
∼= (Ω1

X/C)K , we see that (Ω1
X)K is an extension

of OXK
by OXK

. Up to isomorphism, there are only 2 such bundles on XK , the one
being the trivial rank 2 bundle and the other the indecomposable bundle I2 (see [1]).
Since we have seen already that dimK(H0(XK , (ΩX)K)) = 1, the bundle (Ω1

X)K
cannot be the trivial bundle and hence it is isomorphic to I2. So the pair (VK , φK)
is a I2-valued Higgs pair on XK . Such an I2 valued Higgs pair is equivalent to a
morphism

I∗2 → End(V, V )

such that fiber wise the image lands inside a family of commuting matrices. The
following Lemma about I2-valued Higgs pairs is what we need for our purposes
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Lemma 6. Let E be an elliptic curve over a field k, and φ : V → V ⊗ I2 be an
I2-valued Higgs field. We then have, for any section α ∈ H0(E,End(I2,OE)), the
induced element β = α ◦ φ ∈ H0(E,End(V, V )) is Nilpotent.

Proof. The bundle I2 is an extension of OE by OE and hence we have a short exact
sequence

0 → OE
s
→ I2

t
→ OE → 0.

Further
H0(E, I2) = k < s >, H0(E,End(I2,OE)) = k < t > .

In particular, for a ∈ H0(E, I2) and b ∈ H0(E,End(I2,OE)), we always have

ba = 0 ∈ H0(E,OE).

We also have
I2 ∼= I∗2

Fix an isomorphism as above and then we have

H0(E, I∗2 ) = k < t∗ >, H0(E,End(I∗2 ,OE)) = k < s∗ > .

Consider now the morphism (which we denote by θ as well) induced by the Higgs
field

θ : I∗2 → End(V, V ).

We have a trace map TrV : End(V, V ) → OX and TrV ◦ θ ∈ H0(E,End(I∗2 ,OE)).
Let TrV ◦ θ = λs∗ and α = γt∗. Then

Tr(β) = TrV ◦ θ ◦ α = λγs∗t∗ = 0.

Let L/k be a finite extension so that we have a decomposition of VL as direct sum
of generalized eigenspaces of β,

VL =
⊕

δj∈L

V
δj
L

Since θ point wise lands in a family of commuting endomorphisms, we have V
δj
L are

preserved by θ. Hence, we have induced maps

θδj : I∗2 → End(V
δj
L , V

δj
L ).

and βδj = θδj ◦ α. In particular

β = ⊕βδj .

Now as in the case of V , we get

rank(V
δj
L )δj = Tr(βδj ) = 0.

Hence, either β = 0 or all the eigenvalues are 0 and hence β is nilpotent. �

As a consequence of the above Lemma we have the following

Lemma 7. Let (V, θ) be an I2-valued Higgs pair, with V a semistable rank r degree
0-bundle on E. Then either ,
(a) V = L⊗O⊕r

E with deg(L) = 0, and θ ◦ (idV ⊗ t) = 0, or
(b) ∃W ⊂ E with deg(W ) = 0 and θ(W ) ⊂W ⊗ I2.

Proof. Consider the endomorphism

T = θ ◦ t : V → V

We have from Lemma 6 that T is a nilpotent endomorphism. Let W := Ker(T ).
Now as V is semistable of degree 0, we have deg(W ) ≤ 0. On the other hand by
same reasoning deg(Im(T )) ≤ 0. Hence, deg(W ) is forced to be 0. So if φ 6= 0, then
W is a proper degree 0 sub-bundle invariant under θ and we are done. If θ = 0,
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then θ factors through s : OE → I2, i.e we have an endomorphism φ : V → V such
that

θ = (idV ⊗ s) ◦ (φ).

Using Atiyah’s classification results on bundles on elliptic curves [1], it is easy to
see that unless V = L⊗O⊕r

E where deg(L) = 0, φ always leaves invariant a proper
degree 0 sub-bundle of V . �

We have now all the ingredients to prove Theorem 1 when the fibration has no
multiple fibers. We provide below 2 different arguments, the first one though works
only in the case when the Higgs bundle has no sub-Higgs sheaves.

3.1.1. Higgs bundles with no sub-Higgs sheaves.

Proof. Consider the spectral cover Y ⊂ T ∗X associated to a Higgs bundle (V, θ).
Let rank of V be r. The fact that (V, θ) has no sub-Higgs sheaves is equivalent to Y
being irreducible and the natural map q : Y → X is a finite map, which restricted
to the smooth locus Y sm of Y is a ramified r-sheeted cover of q(Y sm). Further,
we have V = q∗(L) where L is a rank 1 torsion free sheaf on Y . Now think of the
Higgs field θ as a morphism

θ : TX → End(V, V ).

For x ∈ X , the image of the induced morphism of vector spaces

θ(x) : TxX → End(Vx, Vx)

by integrability condition on θ lies inside a commuting family of endomorphism.
Hence, the matrices in the image of θ(x) can be simultaneously triangularized
and the eigenvalues correspond to linear maps TxX → C or equivalently elements
of T ∗

xX which is precisely the set q−1(x) ⊂ Y . Though there might not exist
global sections of T ∗X which restrict to the eigenvalues point wise, we can find
sections of suitable symmetric powers of T ∗X which correspond to the co-efficients
of the characteristic polynomials. The discriminants of the point wise characteristic
polynomials can also be extended to a section of a suitable symmetric power of
T ∗X . Let us call it ∆(θ). Now as we have seen already T ∗X restricts to the unique
indecomposable rank 2 bundle of trivial determinant when restricted to the smooth
fibers. Further it has a unique section which if non-zero is nowhere vanishing.
Assume now x ∈ X with fiber of π over y = π(x) smooth and ∆(θ)(x) = 0. Then
∆(θ) vanishes on the entire fiber π−1(y). In particular, as the vanishing locus
of ∆(θ) is a closed set, it has to be nowhere vanishing on an open set π−1(U)
where U ⊂ C is open. In particular we see that q is unramified on q−1(U) and
the ramification locus is a vertically supported Divisor on X . Denote the scheme
theoretic fiber of f over XK by YK which is a disjoint union of elliptic curves over
K. On the other hand the torsion free sheaf L restricts to a line bundle LK on YK
and VK = (qK)∗(LK). If we denote by G the Galois group (note here we do not
assume YK to be connected, but the Galois group makes sense), then we have

q∗K(VK) = ⊕σ∈Gσ(LK)

Hence #(G)(deg(LK) = #(G)deg(VK) = 0. On the other hand H0(YK , LK) =
H0(XK , VK) 6= 0 and hence the only possibility is LK

∼= OYK
. But then since qK

is unramified (qK)∗(OYK
) = ⊕m

i=1(⊕
ni

j=1K
j
i ) where Ki are torsion line bundles on

XK defining a connected subcover qiK : Y i
K ⊂ YK → XK . But as VK is already an

extension by trivial line bundles, the only possibility is Ki = OXK
for every i and

hence YK is a disjoint union of copies of XK and VK = ⊕r
j=1OXK

. �
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3.1.2. The general case.

Proof. Consider the I2 Higgs pair (VK , θK) on XK . We have VK is an iterated
extension of trivial line bundles. Now from Lemma 7 we have either VK is trivial or
has a degree 0 (hence semistable) sub-bundle WK ⊂ VK preserved by θK . Clearly,
WK is also an iterated extension by trivial line bundles as VK is so. We can extend
WK to a sub-sheaf W of V with torsion free quotient V/W and θ(W ) ⊆W ⊗ Ω1

X .
Further det(W ).F = 0. Every sub-sheaf Q ⊂ V preserved by θ satisfies det(Q).F ≤
0 as VK is semistable of degree 0. Now changing polarization from H to H +mF
for a suitable m ∈ N, we can assume the subsheaf Vmax ⊂ V , which has maximum
slope among the sub-sheaves preserved by θ satisfies det(Vmax).F = 0. In particular
(Vmax)K is also an iterated extension by trivial line bundles and so do the quotient
(V/Vmax)K . Chose a filtration by trivial line bundles on (Vmax)K and (V/Vmax)K
and extend them to X as filtration on Vmax and (V/Vmax) where the sub-quotients
are rank 1 torsion free sheaves of type OX(Di) ⊗ IZi

with Di being vertically
supported divisors for every index i. Now observe this filtration inturn gives a
filtration on V and as in the proof of Proposition 1 we can see that infact Zi = ∅
and Di are vertical divisors. Hence both Vmax and V/Vmax are vertical bundles.
Denote the induced Higgs fields on Vmax and V/Vmax by θ0 and θ1 respectively.
From the assumption both of them are semistable Higgs bundles on X as well of
rank smaller than that of V . Hence by induction we have semistable Higgs bundles
(W0, φ0) and (W1, φ1) on C such that

(Vmax, θ0) ∼= (π∗(W0), π
∗(φ0)), (V/Vmax, θ1) ∼= (π∗(W1), π

∗(φ1)).

Note that we have

deg(W0) = det(Vmax).H/F.H ≤ deg(W1) = det(V/Vmax).H/F.H.

Now consider the short exact sequence (infact a short exact sequence of Higgs
bundles on X)

0 → Vmax → V → V/Vmax → 0. (3.1)

Applying π∗ to equation 3.1, we get a long exact sequence

0 →W0 → π∗(V ) →W1
η
→W1 ⊗ L−1

where L = R1π∗(OX)−1. Now recall since X is relatively minimal and χ(X) > 0,
we have deg(L) > 0. The map η is compatible with the Higgs fields φ0 and φ1 on
W0 and W1 respectively. But

deg(W0) > deg(W1 ⊗ L−1)

and hence as (W0, φ0) and (W1, φ1) are semistable as Higgs bundles on C, the
morphism η = 0. Hence

rk(π∗(V )) = rk(V ) =⇒ VK ∼= O
⊕rk(V )
XK

.

�

3.2. Proof of Theorem 1 in the case of multiple fibers. Recall the diagram

X̃
q

−−−−→ X
yπ̃

yπ

C̃
p

−−−−→ C

where π̃ : X̃ → C̃ is a non-isotrivial relatively minimal elliptic surface with no

multiple fibers. We have C̃ → C is Galois with Galois group Γ. Further X̃ → X
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is etale Galois with Galois group also Γ. From the previous subsection, we have an
equivalence of categories

π̃∗ : CHiggs

C̃
→ CvHiggs

X̃
.

Since π̃ is Γ equivariant, the functor π̃∗ induces a functor

π̃∗
Γ : CΓ−Higgs

C̃
→ CΓ−vHiggs

X̃

We claim now the functor π̃∗
Γ is an equivalence of categories. To that end note

that every Γ-semistable Higgs bundle on X̃ is semistable in the usual sense. Hence

every object (V, θ) ∈ Ob(CΓ−Higgs

X̃
) is isomorphic to a Higgs bundle of the form

(π̃∗(W ), dπ̃(φ)) as π̃∗ is an equivalence of categories. The only thing to verify is if
this isomorphism can be obtained in the category of Γ-equivariant Higgs bundles

on X̃. The idea is to show that for any chosen isomorphism of Higgs bundles λ
in Isom((π̃∗(W ), dπ̃(φ)), (V, θ)) we can provide (W,φ) with a natural Γ structure
such that the isomorphism λ is Γ invariant.

To see this denote by τ X̃g and τ C̃g the respective automorphisms of X̃ and C̃ corre-
sponding to g ∈ Γ. Recall from the definition of Γ-equivariance, we have isomor-
phisms

αg ∈ Isom((V, θ), ((τ X̃g )∗(V ), (τ X̃g )∗(θ))).

satisfying

(τ X̃h )∗(αg)αh = αgh.

Now we have
π̃ ◦ τ X̃g = τ C̃g ◦ π̃, ∀g ∈ Γ.

Fix an isomorphism

λ ∈ Isom((π̃∗(W ), dπ̃(φ)), (V, θ))

Set
βg = (τ X̃g )∗(λ) ◦ αg ◦ λ.

We have then

βg ∈ Isom((π̃∗(W ), dπ̃(φ)), (π̃∗(τ C̃g )∗W ), dπ̃(τ C̃g )∗φ)))

= Isom((W,φ), ((τ C̃g )∗(W ), (τ C̃g )∗(φ))).

and clearly

(τ C̃h )∗(βg)βh = βgh.

Hence βg induce a Γ-structure on (W,φ) such that the isomorphisms λ are Γ-
equivariant.

Let ∆ be a vertical divisor and d = ∆.H
F.H . Denote by MHiggs

X (r,∆, 0) the moduli
space of S-equivalence classes of rank r H-semistable Higgs bundles on X with
vanishing second Chern class and determinant numerically equivalent to ∆.

Denote by MParHiggs
(C,c,m) (r, d) the moduli space of S-equivalence classes of parabolic

Higgs bundles on C with parabolic structures above the points ci (and weights
above ci lying in Z

miZ
) and parabolic degree d.

We have the following Corollary of Theorem 1

Corollary 2. The moduli spaces MHiggs
X (r,∆, 0) and MParHiggs

(C,c,m) (r, d) are isomor-

phic as algebraic varieties.

Proof. As in the proof of Theorem 1 it is enough to consider the case of a fi-

bration with no multiple fibers. We denote by MHiggs
X (r,∆, 0) (MHiggs

C (r, d))

the moduli functors whose corresponding coarse moduli spaces are MHiggs
X (r,∆, 0)

(MHiggs
C (r, d) respectively).
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Recall these moduli functors are from category of finite-type schemes over C to cat-

egory of sets. For a given finite type scheme T , MHiggs
X (r,∆, 0)(T ) ( MHiggs

C (r, d))
is the set of equivalence classes of flat families of semistable Higgs bundles on X of
rank r, vanishing second Chern class and determinant numerically equivalent to ∆
(semistable Higgs bundles on C of rank r and degree d respectively) parametrised

by T . Recall a family parametrised by T corresponding to MHiggs
X (r,∆, 0), is a pair

(V , ψ) where V is a sheaf on X×T , flat over T and ψ ∈ Hom(V ,V⊗OX×T
pr∗1(Ω

1
X))

where pr1 denotes the projection map from X × T to X . Further for every closed
point t ∈ T , we have for the natural closed embedding t : X →֒ X × T , The pair

(Vt, ψt) := (t∗V , t∗ψ)

is an object in CvHiggs
X with det(Vt) ≡ ∆. Let πT denote the morphism

πT := π × idT : X × T → C × T.

From Theorem 1, we get the pair (W , φ) := ((πT )∗(V), (πT )∗(ψ)) is a flat fam-

ily of objects in CHiggs
C with deg(Wt) = d for every t. Thus we get a Natural

transformation of functors

π∗ : MHiggs
X (r,∆, 0) → MHiggs

C (r, d)

Conversely starting from a flat family (W , φ) of objects in CHiggs
C , with deg(Wt) = d

for every t, parametrised by T , we have ((π)∗T (W), (πT )
∗(φ)) is a flat family of

objects in CvHiggs
X parametrised by T as considered above.

Thus we get a natural transformation

π∗ : MHiggs
C (r, d) → MHiggs

X (r,∆, 0)

The composition π∗ ◦ π∗ and π∗ ◦ π∗ are clearly the identity transformations of the
corresponding functors.

Hence the moduli functors MHiggs
X (r,∆, 0) and MHiggs

C (r, d) are naturally equiva-

lent and so the corresponding coarse moduli spacesMHiggs
X (r,∆, 0) andMHiggs

C (r, d)
are isomorphic as varieties. �
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Higgs bundles, The Quarterly Journal of Mathematics 60 (2009), no. 2, 183–233.
11. Qing Liu and Takeshi Saito, Inequality for conductor and differentials of a curve over a local

field, Journal of Algebraic Geometry 9 (2000), 409–424.
12. VB Mehta and CS Seshadri, Moduli of vector bundles on curves with parabolic structures,

Mathematische Annalen 248 (1980), no. 3, 205–239.



16 ROHITH VARMA

13. Mudumbai Seshachalu Narasimhan and Conjeevaram S Seshadri, Stable and unitary vector
bundles on a compact Riemann surface, Annals of Mathematics (1965), 540–567.

14. rvarma (http://mathoverflow.net/users/25576/rvarma), sections of the cotangent bundle of
elliptic surfaces, MathOverflow, URL:http://mathoverflow.net/q/121880 (version: 2013-02-
16).

15. Peter Scheinost and Martin Schottenloher, Metaplectic quantization of the moduli spaces of
flat and parabolic bundles, J. reine angew. Math 466 (1995), 145–219.

16. CS Seshadri, Space of unitary vector bundles on a compact Riemann surface, Annals of
Mathematics (1967), 303–336.

17. Carlos T Simpson, Moduli of representations of the fundamental group of a smooth projective
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