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On Induced Colourful Paths in Triangle-free Graphs

Jasine Babu1 Manu Basavaraju2 L. Sunil Chandran3 Mathew C. Francis4

Abstract

Given a graph G = (V, E) whose vertices have been properly coloured, we say that a path in G is colourful if no two

vertices in the path have the same colour. It is a corollary of the Gallai-Roy-Vitaver Theorem that every properly

coloured graph contains a colourful path on χ(G) vertices. We explore a conjecture that states that every properly

coloured triangle-free graph G contains an induced colourful path on χ(G) vertices and prove its correctness when the

girth of G is at least χ(G). Recent work on this conjecture by Gyárfás and Sárközy, and Scott and Seymour has shown

the existence of a function f such that if χ(G) ≥ f (k), then an induced colourful path on k vertices is guaranteed to

exist in any properly coloured triangle-free graph G.
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1. Introduction

All graphs considered in this paper are simple, undirected and finite. For a graph G = (V, E), we denote the vertex

set of G by V(G) and the edge set of G by E(G). A function c : V(G)→ {1, 2, . . . , k} is said to be a proper k-colouring

of G if for any edge uv ∈ E(G), we have c(u) , c(v). A graph is properly coloured, if it has an associated proper

k-colouring c specified (for some k). The minimum integer k for which a graph G has a proper k-colouring is the

chromatic number of G, denoted by χ(G). A subgraph H of a properly coloured graph G is said to be colourful if no

two vertices of H have the same colour. If a colourful subgraph H of G is also an induced subgraph, then we say that

H is an induced colourful subgraph of G. The length of a path or cycle in G is the number of edges in the path or

cycle. Therefore, a path on t vertices has length t − 1 and a cycle on t vertices has length t.

The following classical result of Gallai, Roy and Vitaver (see [11]) tells us that that every (not necessarily op-

timally) properly coloured graph G has a colourful path on χ(G) vertices (an alternative proof for this is given in

Theorem 5).

Theorem 1 (Gallai-Roy-Vitaver). Let G be a graph and let H be any directed graph obtained by orienting the edges

of G. Then H contains a directed path on χ(G) vertices.

Indeed, given a properly coloured graph G, we can construct a directed graph H by fixing an arbitrary order on

the colours and orienting every edge from the vertex of lower colour to the vertex of higher colour. Then, by the

Gallai-Roy-Vitaver Theorem, we know that there is directed path on χ(G) vertices in H and this is a colourful path in

G as the colours on this path are strictly increasing.

We are interested in the question of when one can find colourful paths on χ(G) vertices that are also induced in

a given properly coloured graph G. Note that the colourful path on χ(G) vertices that should exist in any properly

coloured graph G, as noted above, may not always be an induced path. In fact, when G is a complete graph, there is

no induced path on more than two vertices in the graph. The following conjecture is due to N. R. Aravind [2].

Conjecture 2. Let G be a triangle-free graph that is properly coloured. Then there is an induced colourful path on

χ(G) vertices in G.

Recently, Gyárfás and Sárközy [5] studied this conjecture and showed that there exists a function f (k) such that in

any properly coloured graph G with girth at least 5 and χ(G) ≥ f (k), there is an induced colourful path on k vertices.

This was improved by Scott and Seymour [9], who removed the girth condition, and showed that for any two integers

k and t, there exists a function f (k, t) such that in any properly coloured graph G with ω(G) ≤ t and χ(G) ≥ f (k, t),

there is an induced colourful path on k vertices (here, ω(G) denotes the maximum size of a clique in G).

A necessary condition for Conjecture 2 to hold is the presence of an induced path on χ(G) vertices in any triangle-

free graph G. Indeed something stronger is known to be true: each vertex in a triangle-free graph G is the starting

point of an induced path on χ(G) vertices [4]. Concerning induced trees, Gyárfás [3] and Sumner [10] conjectured

that there exists an integer-valued function f defined on finite trees with the property that every triangle-free graph

G with χ(G) = f (T ) contains T as an induced subgraph. This was proven true for trees of radius two by Gyárfás,

Szemerédi, and Tuza [6]. There have been several investigations on variants of the Gallai-Roy-Vitaver Theorem [1, 8].

Every connected graph G other than C7 admits a proper χ(G)-colouring such that every vertex of G is the beginning
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of a (not necessarily induced) colourful path on χ(G) − 1 vertices [1]. A stronger version of the Gallai-Roy-Vitaver

Theorem that guarantees an induced directed path on χ(G) vertices in any directed graph G would have easily implied

Conjecture 2. Clearly, such a theorem cannot be true for every directed graph. But Kierstead and Trotter [7] show that

no such result can be obtained even if the underlying undirected graph of G is triangle-free. They show that for every

natural number k, there exists a digraph G such that its underlying undirected graph is triangle-free and has chromatic

number k, but G has no induced directed path on 4 vertices.

Conjecture 2 is readily seen to be true for any triangle-free graph G with χ(G) = 3, because the colourful path

guaranteed to exist in G by the Gallai-Roy-Vitaver Theorem is also an induced path in G. For the same reason, the

conjecture is true for any graph G with g(G) > χ(G), where g(G) is the girth of G, or the length of the shortest cycle

in G. In this paper, we first prove Conjecture 2 for the case when χ(G) = 4. Note that it follows from the above

observation that to prove this, we only need to consider graphs G with g(G) = 4. Proving Conjecture 2 in its full

generality even for the case when χ(G) = 5 does not seem to be easy. As explained above, in order to prove the

conjecture for the case χ(G) = 5, we only need to prove it for graphs with g(G) ∈ {4, 5}. Our approach shows that the

conjecture is true when g(G) = 5; the case when g(G) = 4 is open. Scott and Seymour [9] mention that they verified

by hand that the conjecture holds for all possible colourings of the Mycielski graph on 23 vertices having chromatic

number 5. One natural way to weaken the conjecture would be to restrict the girth of the graph to be above some

constant fraction of χ(G). Even this appears to be difficult. The main result of this paper shows that for each value of

χ(G) ≥ 4, the conjecture is true for graphs with g(G) = χ(G).

2. Preliminaries

Notation used in this paper is the standard notation used in graph theory (see e.g. [11]). We shall now describe a

special greedy colouring procedure for an already coloured graph that will later help us in proving our main result.

The refined greedy algorithm. Given a properly coloured graph G with the colouring β, we will construct a new

proper colouring α : V(G) → N
>0 of G, using the algorithm given below. Let b1 < b2 < · · · < bt be the colours used

by β.

For every vertex v ∈ V(G), set α(v)← 0

for i from 1 to t do

for vertex v with β(v) = bi and α(v) = 0 do

Colour v with the least positive integer that has

not already been assigned to a neighbour of it

i.e., set α(v)← min(N>0 \ {α(u) : u ∈ N(v)}).

Let G be a graph with a proper colouring β and let α be the proper colouring that is constructed by the refined

greedy algorithm. We now define a decreasing path in G as follows:

Definition 3 (Decreasing path). A path u1u2 . . . ul in G is said to be a “decreasing path” if for 2 ≤ i ≤ l, α(ui) < α(ui−1)

and β(ui) < β(ui−1).

Lemma 4. Let v ∈ V(G) and X = {a1, a2, . . . , a|X |} ⊆ {1, 2, . . . , α(v) − 1} such that a1 < a2 < · · · < a|X |. Then there is

a decreasing path vu|X |u|X |−1 . . . u1 in G such that for 1 ≤ i ≤ |X|, α(ui) = ai.

Proof. We shall prove this by induction on α(v). It is easy to see that the statement is true for the base case when

α(v) = 1 (because X = ∅ in that case). Suppose that the statement is true for vertices u with α(u) < α(v). Note that

the refined greedy algorithm colours each vertex exactly once. The fact that the algorithm assigned the colour α(v) to

v implies that at the time of colouring v, we had α(v) = min(N>0 \ {α(u) : u ∈ N(v)}). Since a|X | < α(v), this means

that at that point of time, there was w ∈ N(v) having α(w) = a|X |. Also, since w had previously been coloured by the

algorithm, we have β(w) ≤ β(v). But as w ∈ N(v), we know that β(w) , β(v), giving us β(w) < β(v). Now, applying the

induction hypothesis on w and the set X \ {a|X |}, we get that there is a decreasing path wu′
|X |−1

u′
|X |−2
. . . u′

1
in G such that

for 1 ≤ i ≤ |X| − 1, α(u′
i
) = ai. It is clear that vwu′

|X |−1
u′
|X |−2
. . . u′

1
is then a decreasing path of the form vu|X |u|X |−1 . . . u1,

where for 1 ≤ i ≤ |X|, α(ui) = ai.

The above observation about the refined greedy algorithm can be used to show that there is a colourful path on

χ(G) vertices in every properly coloured graph G (without using the Gallai-Roy-Vitaver Theorem).

Theorem 5. If G is any graph whose vertices are properly coloured, then there is a colourful path on χ(G) vertices

in G.

Proof. Let β denote the proper colouring of G. Run the refined greedy algorithm on G to generate the colouring α.

Clearly, the algorithm will use at least χ(G) colours as the colouring α generated by the algorithm is also a proper

colouring of G. Let v be any vertex in G with α(v) ≥ χ(G). Now consider the set X = {1, 2, . . . , χ(G)−1}. By applying

Lemma 4 on v and X, we can conclude that there is a path on χ(G) vertices starting at v on which the colours in the

colouring β are strictly decreasing. This path is a colourful path on χ(G) vertices in G.
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Corollary 6. Any properly coloured graph G with g(G) > χ(G) has an induced colourful path on χ(G) vertices.

Proof. If g(G) > χ(G), then the colourful path given by Theorem 5 is an induced path in G.

This implies that the conjecture is true for all triangle-free graphs with chromatic number at most 3. It also implies

that in order to prove Conjecture 2, one only has to consider graphs G with 4 ≤ g(G) ≤ χ(G). The main result of this

paper is that in any properly coloured graph G with 4 ≤ g(G) = χ(G), there exists an induced colourful path on χ(G)

vertices.

3. Induced colourful paths in graphs with girth equal to chromatic number

In this section, we shall prove our main result, given by the theorem below.

Theorem 7. Let G be a graph with g(G) ≥ χ(G) = k, where k ≥ 4, and whose vertices have been properly coloured.

Then there exists an induced colourful path on k vertices in G.

We can assume that G is “critical”, i.e., every proper induced subgraph of G has chromatic number less than

k = χ(G). This is because if the theorem is proven for critical graphs, then since G contains a critical induced

subgraph G′ having χ(G′) = k, we can apply the theorem to G′, whose vertices are coloured with same colours that

they had in G, to get an induced colourful path in G′ containing k vertices (note that g(G′) ≥ g(G)). This path is

clearly also an induced colourful path in G. Assuming that G is critical, the following observation is not too hard to

see [11].

Observation 8. Every vertex in G has degree at least k − 1.

Note that critical graphs are connected, and hence we assume that G is connected. Note also that by Corollary 6,

we can assume g(G) = k. Let β : V(G)→ N
>0 denote the proper colouring of G that is given.

A k-cycle in G in which no colour repeats is said to be a colourful k-cycle, sometimes shortened to just “colourful

cycle”. Notice that every colourful cycle in G is also an induced cycle as g(G) = k. Also, from here onwards, we

shorten “colourful path on k vertices” to just “colourful path”.

Suppose that there is no induced colourful path on k vertices in G.

Observation 9. Since g(G) = k, if y1y2 . . . yk is a colourful path on k vertices in G, then the edge y1yk ∈ E(G). Thus,

y1y2 . . . yky1 is a colourful k-cycle in G.

Let α be a proper colouring of G generated by running the refined greedy algorithm on G. We shall refer to the

colours of the colouring α as “labels”. From here onwards, we shall reserve the word “colour” to refer to a colour

in the colouring β. As before, whenever we say that a path or a cycle is “colourful”, we are actually saying that it is

colourful in the colouring β.

We say that a path with no repeating colours is an “almost decreasing path” if the subpath induced by the vertices

other than the starting vertex is a decreasing path. Note that any decreasing path is also an almost decreasing path.

Definition 10. We say that a set of vertices or a subgraph in G “sees” the colour i if one of the vertices in it has

colour i.

If G1 and G2 are two subgraphs of G, then we define G1∪G2 to be the subgraph of G with vertex set V(G1)∪V(G2)

and edge set E(G1)∪E(G2). In particular, if G1 is a subgraph of G and xy ∈ E(G), we denote by G1 ∪ xy the subgraph

with vertex set V(G1) ∪ {x, y} and edge set E(G1) ∪ {xy}.

The proof of Theorem 7 is split into two cases: when k = 4 and when k > 4.

3.1. Case when k = 4

In this case, we have χ(G) = g(G) = 4.

As α is also a proper colouring of G, we know that there exists a vertex v in G with label 4 (i.e., α(v) = 4). By

Lemma 4, there exists a decreasing path v4v3v2v1 where v4 = v and for 1 ≤ i ≤ 3, we have β(vi) < β(vi+1) and

α(vi) = i. Clearly, as v4v3v2v1 is a decreasing and hence colourful path, by Observation 9, we have v1v4 ∈ E(G).

Again by Lemma 4, we have a path vv′
2
v′

1
in which we have β(v′

1
) < β(v′

2
) < β(v), α(v′

2
) = 2 and α(v′

1
) = 1. Note that

v′
2
, v2 and v′

1
, v1 (as otherwise vv′

2
v1v would be a triangle in G). This means that the vertices in {v4, v3, v2, v1, v

′
2
, v′

1
}

are all pairwise distinct. Let β(vi) = bi for each i, where 1 ≤ i ≤ 4. We shall call the colours b1, b2, b3, b4 “primary

colours”. Clearly, we have b1 < b2 < b3 < b4.

Claim 11. β(v′
2
) = b2 and β(v′

1
) = b1.

Proof. Suppose that β(v′
2
) , b2. Then we have that either the path v′

2
v4v3v2 or the path v′

2
v4v1v2 is colourful, which

implies that v′
2
v2 ∈ E(G), a contradiction since α(v′

2
) = α(v2). Therefore we have β(v′

2
) = b2. Since vv′

2
v′

1
is a

decreasing path, this tells us that β(v′
1
) < b2. Thus, if β(v′

1
) , b1, the path v′

1
v′

2
v4v1 is colourful, implying that

v′
1
v1 ∈ E(G), which is a contradiction since α(v′

1
) = α(v1). We can thus conclude that β(v′

1
) = b1.
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v4

v3

v2

v1

v′
2

v′
1

Figure 1: The forced vertices when k = 4.

Now notice that the path v′
1
v′

2
v4v3 is colourful and hence we have that v′

1
v3 ∈ E(G). We call the vertices in the

set {v4, v3, v2, v1, v
′
2
, v′

1
} “forced vertices”. The vertices of G other than these are called “optional vertices”. Figure 1

shows the subgraph induced in G by the forced vertices. From our previous observations, we have that for any forced

vertex w, β(w) = bα(w). The following two observations about forced vertices are easy to verify.

Observation 12. Let u be a forced vertex. For X ⊆ {b1, b2, b3, b4} \ {β(u)} such that |X| = 2, there exists a colourful

path on 3 vertices starting at u that sees exactly the colours in X ∪ {β(u)} and contains only forced vertices.

Observation 13. Let x, y be forced vertices such that xy < E(G) and β(x) , β(y). Then either there exists a forced

vertex x′ ∈ N(x) such that β(x′) = β(y) or there exists a forced vertex y′ ∈ N(y) such that β(y′) = β(x).

Lemma 14. Let u be an optional vertex. If N(u) contains a forced vertex x, then there exist forced vertices y, z such

that uxzyu is a colourful cycle.

Proof. Choose some X ⊆ {b1, b2, b3, b4} \ {β(u), β(x)} such that |X| = 2. From Observation 12, there exists a colourful

path xzy, where z and y are forced vertices, that sees exactly the colours in X ∪ {β(x)}. Clearly, uxzy is a colourful

path, which implies by Observation 9 that uxzyu is a colourful cycle.

Lemma 15. Every optional vertex is adjacent to at least one forced vertex.

Proof. Consider the set of all optional vertices that have no forced vertices as neighbours. For the sake of contradic-

tion, assume that this set is nonempty. Let w be a vertex in this set that is closest to a forced vertex. As G is connected,

w has a neighbour w′ such that w′ is an optional vertex and N(w′) contains a forced vertex. From Lemma 14, there is

a colourful cycle w′xzyw′, where x, z, y are all forced vertices. If β(w) , β(z), then at least one of the paths ww′xz or

ww′yz will be a colourful path, and by Observation 9 we will have wz ∈ E(G), which contradicts the fact that there

was no forced vertex in N(w). We can therefore assume that β(w) = β(z). Notice that x and y are two nonadjacent

forced vertices with β(x) , β(y). By Observation 13, we then get that either N(x) contains a forced vertex x′ such that

β(x′) = β(y) or N(y) contains a vertex forced vertex y′ such that β(y′) = β(x). In the former case, ww′xx′ is a colourful

path and in the latter case, ww′yy′ is a colourful path. By Observation 9, we now have that either wx′ ∈ E(G) or

wy′ ∈ E(G). This again contradicts the fact that there are no forced vertices in N(w).

Let S 1 denote the set of optional vertices adjacent to at least one of the forced vertices {v4, v2, v
′
1
} and let S 2 denote

the set of optional vertices adjacent to at least one of the forced vertices {v3, v1, v
′
2
}.

Lemma 16. (i) S 1 and S 2 are disjoint, and

(ii) S 1 and S 2 are both independent sets.

Proof. First let us show that S 1 and S 2 are disjoint. Suppose that there is a vertex w ∈ S 1 ∩ S 2. Consider any two

forced vertices x and y in N(w) such that x ∈ {v4, v2, v
′
1
} and y ∈ {v3, v1, v

′
2
}. As G is triangle-free, we only have the two

possibilities (x = v′
1
, y = v1) or (x = v2, y = v′

2
). Note that this implies that |N(w)∩{v4, v2, v

′
1
}| = |N(w)∩{v3, v1, v

′
2
}| = 1.

This lets us conclude that the set of forced vertices in N(w) is either {v′
1
, v1} or {v2, v

′
2
}. We now have that the two

forced vertices in the neighbourhood of w have the same colour. Then there cannot exist a colourful cycle containing

w in which all the other vertices are forced vertices, contradicting Lemma 14. This proves (i).

From (i), we have that for each vertex w ∈ S 1, the forced vertices in N(w) all lie in {v4, v2, v
′
1
} and for each vertex

w′ ∈ S 2, the forced vertices in N(w′) all lie in {v3, v1, v
′
2
}. Since we know from Lemma 14 and Lemma 15 that each

vertex in S 1 ∪ S 2 has at least two forced vertices in their neighbourhood, we can conclude that each vertex in S 1 has

at least two neighbours from {v4, v2, v
′
1
} and that each vertex in S 2 has at least two neighbours from {v3, v1, v

′
2
}. This

means that for any two w,w′ ∈ S 1, there is at least one vertex in {v4, v2, v
′
1
} that is a neighbour of both w and w′. As

G is triangle-free, we can conclude that ww′ < E(G). For the same reason, for any two vertices w,w′ ∈ S 2, we have

ww′ < E(G). This proves (ii).
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From Lemma 16(i), we know that there are no edges between S 1 and {v3, v1, v
′
2
}. Similarly, there are no edges

between S 2 and {v4, v2, v
′
1
}. Now, by Lemma 16(ii), we have that S 1 ∪ {v3, v1, v

′
2
} is an independent set and S 2 ∪

{v4, v2, v
′
1
} is an independent set. Since from Lemma 15, we know that V(G) = S 1 ∪ S 2 ∪ {v4, v3, v2, v1, v

′
2
, v′

1
}, this

tells us that G is bipartite, which contradicts the assumption that χ(G) = 4. Therefore, there can be no properly

coloured graph G such that g(G) = χ(G) = 4 with no induced colourful path on 4 vertices. This completes the proof

of Theorem 7 for the case k = 4.

3.2. Case when k > 4

We now use the the fact that g(G) = k > 4 to complete the proof. In this case we define forced vertices, primary

colours and the primary cycle in a more general way. First, we give a useful lemma.

Lemma 17. Let y1y2 . . . yky1 be a colourful k-cycle. Let z ∈ N(yi) \ {yi−1, yi+1} for some i ∈ {1, 2, . . . , k}. Then

β(z) ∈ {β(y1), . . . , β(yk)} \ {β(yi−1), β(yi), β(yi+1)}. (Here we assume that yi+1 = y1 when i = k and that yi−1 = yk when

i = 1.)

Proof. Clearly, z < {y1, y2, . . . , yk} as every colourful cycle is an induced cycle. Suppose β(z) < {β(y1), . . . , β(yk)} \

{β(yi−1), β(yi), β(yi+1)}. Clearly, β(z) , β(yi). Suppose that β(z) , β(yi+1). Then observe that zyiyi+1 . . . yky1 . . . yi−2

is a colourful path on k vertices and hence zyi−2 ∈ E(G). This implies that zyiyi−1yi−2z is a 4-cycle in G, which is

a contradiction to the fact that g(G) = k > 4. Therefore, β(z) = β(yi+1). Then the path zyiyi−1 . . . y1yk . . . yi+2 is

a colourful path and the same reasoning as above tells us that there is a 4-cycle zyiyi+1yi+2z in G, which is again a

contradiction.

Corollary 18. Let y1y2 . . . yky1 be a colourful k-cycle. Let z ∈ N(yi) for some i ∈ {1, 2, . . . , k}. Then β(z) ∈

{β(y1), . . . , β(yk)}.

The vertex v: Fix v to be a vertex which has the largest label. Since α is also a proper vertex colouring of G, it should

use at least k labels. In other words, α(v) ≥ k. (For the proof to go through, we could have chosen any vertex with

label k as v. But as Lemma 19 shows, the vertex with largest label will have label k.)

Primary cycle: By applying Lemma 4 to v and the set of labels {1, 2, . . . , k − 1}, we can conclude that there exists

a decreasing path vkvk−1 . . . v1 where vk = v and such that α(vi) = i for all 1 ≤ i < k and β(vi) < β(vi+1) for all

1 ≤ i ≤ k − 1. Since this path is colourful, by Observation 9, vvk−1vk−2 . . . v1v is a colourful cycle, which we shall call

the “primary cycle”. For 1 ≤ i ≤ k, we shall denote by bi the colour β(vi). The set of colours {bk, bk−1, . . . , b1} shall be

called the set of “primary colours”.

Forced vertices: A vertex u ∈ V(G) is said to be a “forced vertex” if there is a decreasing path from v to u. Note that

every vertex on the primary cycle is a forced vertex.

Lemma 19. α(v) = k. Hence, for 1 ≤ i ≤ k, α(vi) = i.

Proof. Suppose for the sake of contradiction that α(v) > k. By Lemma 4, there exists a decreasing path yk+1yk . . . y1

where yk+1 = v and for 1 ≤ i ≤ k, we have α(yi) = i and β(yi) < β(yi+1). As the paths yk+1yk . . . y2 and ykyk−1 . . . y1 are

both colourful, it must be the case that yk+1y2, yky1 ∈ E(G). But then, yk+1y2y1ykyk+1 is a cycle on four vertices in G,

which is a contradiction to the fact that g(G) = k > 4.

Lemma 20. For each i ∈ {1, 2, . . . , k − 1} there is exactly one vertex ui in N(v) with label i. Moreover, β(ui) = bi and

there is a colourful cycle Ci containing ui and v that contains only forced vertices.

Proof. For each i ∈ {1, 2, . . . k−1}, by applying Lemma 4 to v and the set {i}, we get that there exists a decreasing path

vui where α(ui) = i and β(ui) < β(v) = bk. We shall choose uk−1 to be vk−1. Because ui is adjacent to v which is on the

primary cycle, by Corollary 18, we know that β(ui) is a primary colour.

We claim that β(ui) = bi and that there is a colourful cycle containing v and ui that contains only forced vertices.

We shall use backward induction on i prove this. Consider the base case when i = k − 1. Since uk−1 = vk−1, we

know that β(uk−1) = bk−1 and that there is a colourful cycle (the primary cycle) that contains uk−1 and v and also

contains only forced vertices. Thus the claim is true for the base case. Let us assume that the claim has been proved

for uk−1, uk−2, . . . , ui+1. If β(ui) = b j > bi, then b j ∈ {bi+1, bi+2, . . . , bk−1} (recall that β(ui) is a primary colour). By

the induction hypothesis, we know that the vertex u j ∈ N(v) has β(u j) = b j and that there is a colourful cycle C j

containing u j and v. Note that u j , ui (as α(ui) , α(u j)), but β(u j) = β(ui) = b j. Therefore, as C j contains u j and

is a colourful cycle, it cannot contain ui. Since ui is adjacent to v which is on C j, and β(ui) = b j, we now have a

contradiction to Lemma 17 (note that u jv is an edge of C j as every colourful cycle is a chordless cycle). So it has to

be the case that β(ui) ≤ bi. By Lemma 4, there exists a path yiyi−1yi−2 . . . y1, where yi = ui, such that for 1 ≤ j ≤ i − 1,

α(y j) = j and β(y j) < β(y j+1). Notice that y1y2 . . . yivvk−1 . . . vi+1 is a colourful path and therefore by Observation 9,

Ci = y1y2 . . . yivvk−1 . . . vi+1y1 is a colourful cycle containing both ui and v. Since vi is adjacent to vi+1 which is on Ci,
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by Corollary 18, we know that there is some vertex z on Ci such that β(z) = bi. Clearly, z ∈ {yi, yi−1, . . . , y1}. Since

β(z) = bi ≥ β(yi) (recall that ui = yi) and yiyi−1 . . . y1 is a decreasing path, we have z < {yi−1, yi−2, . . . , y1}. Therefore,

we have z = yi, which implies that β(ui) = bi. Notice that each y j ∈ {yi, yi−1, . . . , y1}, because of the decreasing path

vyiyi−1 . . . y j, is a forced vertex. Thus, Ci is a colourful cycle containing ui and v that contains only forced vertices.

This shows that for any i ∈ {1, 2, . . . , k − 1}, β(ui) = bi and there is a colourful cycle containing v and ui that contains

only forced vertices.

We shall now show that ui is the only vertex in N(v) which has the label i. Suppose that there is a vertex u ∈

N(v) such that α(u) = i and u , ui. Since u is adjacent to a colourful cycle containing only primary colours (the

primary cycle), we can conclude from Corollary 18 that β(u) is a primary colour. Therefore, β(u) = b j for some

j ∈ {1, 2, . . . , k − 1}. From what we observed above, β(u j) = b j and there exists a colourful cycle C j containing the

vertices v and u j. Note that u j , u since if j , i, then u j and u have different labels and if j = i, we know that u j , u

(as we have assumed that ui , u). Hence u is not in C j (as C j already has a vertex u j with β(u j) = b j) but is adjacent

to it. But now C j and u contradict Lemma 17 as u jv is an edge of C j. Therefore, u cannot exist.

Corollary 21. Let C be any colourful cycle containing v. Then C sees only primary colours.

Proof. Notice that from Lemma 20, we know that for every primary colour b j ∈ {b1, b2, . . . , bk−1}, there is a vertex u j

with β(u j) = b j that is adjacent to v. Because v is in C, we can apply Corollary 18 to C and u j to conclude that b j is

present in C. This means that every primary colour appears on at least one vertex of C. Since C was a k-cycle, this

means that C sees only primary colours.

The following corollary shows that k ≤ 6. However, we do not need this fact to prove Theorem 7.

Corollary 22. k is 5 or 6.

Proof. By Lemma 20, there exists a vertex u2 ∈ N(v) such that α(u2) = 2 and β(u2) = b2. By applying Lemma 4

to u2 and the set {1}, we know that there exists z ∈ N(u2) such that α(z) = 1 and β(z) < β(u2) = b2. Now, the path

zu2vvk−1vk−2 . . . v3 is a colourful path and hence by Observation 9, we have that zv3 ∈ E(G). By just comparing labels,

it is clear that u2 , v1 and z , v2. Further, u2 , v2 as vv2 < E(G) and z , v1 as otherwise, there will be the triangle

vu2zv in G. We then have the 6-cycle vu2zv3v2v1v in G, which implies that k = g(G) ≤ 6. Since k > 4, we now have

k ∈ {5, 6}.

Lemma 23. If u ∈ V(G) is a forced vertex such that α(u) = i, then β(u) = bi. Moreover, if P is any decreasing path

from v to u, then there is a colourful cycle which has P as a subpath, contains only forced vertices, and sees exactly

the primary colours.

Proof. Consider a forced vertex u. We shall prove the statement of the lemma for u by backward induction on α(u).

The statement is true for α(u) ∈ {k, k − 1} as there is only one forced vertex each with labels k and k − 1—which are v

and vk−1 respectively (recall that from Lemma 20, uk−1 = vk−1 is the only vertex in N(v) with label k − 1). Also, note

that they are both in a colourful cycle (the primary cycle) that satisfies the required conditions. Let us assume that the

statement of the lemma has been proved for α(u) ∈ {k, k − 1, . . . , i + 1}. Let us look at the case when α(u) = i. Let z

be the predecessor of u in the path P and let Pz be the subpath of P that starts at v and ends at z. Let α(z) = j. By the

induction hypothesis, β(z) = b j and z is in a colourful cycle C that contains only primary colours. By Corollary 18,

we can infer that β(u) is a primary colour. Since P was a decreasing path, β(u) ∈ {b1, b2, . . . , b j−1}. If β(u) = bl with

b j > bl > bi, then notice that there already exists a neighbour y of z with α(y) = l and β(y) < β(z), because the refined

greedy algorithm set α(z) = j. Note that Pz∪zy is a decreasing path from v to y, which implies that y is a forced vertex.

Clearly, u , y as α(u) , α(y). Because of our induction hypothesis, β(y) = bl and there is a colourful cycle containing

the path Pz∪zy as a subpath. As β(u) = β(y), u is outside this cycle but is a neighbour of z. This contradicts Lemma 17.

Therefore, β(u) ≤ bi. Consider the decreasing path yiyi−1 . . . y1 where yi = u, and for s ∈ {1, 2, . . . , i−1}, α(ys) = s and

β(ys) < β(ys+1) which exists by Lemma 4. Again by Lemma 4, there exists a decreasing path Q starting from v whose

vertices other than v have exactly the labels in {i+ 1, i+ 2, . . . , k} that are not seen on Pz. By the induction hypothesis,

we can now see that every colour in {bi+1, bi+2, . . . , bk} occurs exactly once in the path Q ∪ Pz. Since yiyi−1 . . . y1 is a

decreasing path in which every vertex has colour at most bi, we can conclude that the path P′ = Q∪ Pz ∪ zyiyi−1 . . . y1

is a colourful path. By Observation 9, the graph induced by V(P′) is a colourful cycle containing v, which we shall call

C′. By Corollary 21, we know that C′ contains only primary colours. Now, if β(u) < bi, then because uyi−1 . . . y1 was a

decreasing path, it should mean that β(y1) < b1, which is a contradiction. Thus, β(u) = bi and C′ is a cycle containing

P as a subpath and which contains only forced vertices and primary colours (note that each ys, for 1 ≤ s ≤ k − 1, is a

forced vertex as there is the decreasing path Pz ∪ zyiyi−1 . . . ys from v to ys).

Corollary 24. Let u be a forced vertex with α(u) = i. Then, for each j ∈ {1, 2, . . . , i − 1} there is exactly one forced

vertex u j in N(u) with label j. Moreover, for each j ∈ {1, 2, . . . , i − 1}, there is a colourful cycle containing the edge

uu j, sees exactly the primary colours and contains only forced vertices.
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Figure 2: The forced vertices when k = 5. The vertices in the primary cycle are named, while only the labels of the other forced vertices are shown.
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Figure 3: The forced vertices when k = 6. The vertices in the primary cycle are named, while only the labels of the other forced vertices are shown.

Proof. As u is a forced vertex, we have from Lemma 23 that β(u) = bi. We further know that there exists a decreasing

path P from v to u. Lemma 4 can be used to infer that there exists a vertex u j ∈ N(u) such that α(u j) = j and

β(u j) < β(u). As P ∪ uu j is a decreasing path, u j is a forced vertex. Suppose for the sake of contradiction that there

exists u′
j
, u j such that α(u′

j
) = j and u′

j
is a forced vertex in N(u). By Lemma 23, we have that β(u j) = β(u

′
j
) = b j.

Applying Lemma 23 on u j and the decreasing path P∪ uu j, we know that there exists a colourful cycle containing the

edge uu j, sees exactly the primary colours and contains only forced vertices. As β(u j) = β(u
′
j
), the vertex u′

j
is not on

this cycle. This contradicts Lemma 17.

It might be helpful to note that combining Corollaries 22 and 24, we get that the forced vertices in G are as shown

in Figure 2 or Figure 3. But we do not use this observation for the proof.

Clearly, the only forced vertex with label k is vk. And by Lemma 20, we also have that the only forced vertex with

label k − 1 is vk−1. This gives us the following observation.

Observation 25. There are exactly k − 2 forced vertices in N(vk−2).

Proof. From Corollary 24, we know that for each i ∈ {1, 2, . . . , k − 3}, there is exactly one forced vertex with label

i in N(vk−2). The only forced vertices with labels higher than k − 2 are vk−1 and vk. Since vk−2vk < E(G) and

vk−2vk−1 ∈ E(G), there are exactly k − 2 forced vertices in N(vk−2).

Lemma 26. Every vertex in N(vk−2) is a forced vertex.

Proof. Suppose for the sake of contradiction that there exists a vertex u ∈ N(vk−2) that is not a forced vertex. Applying

Lemma 17 on the primary cycle and u, we get that β(u) is a primary colour other than bk−1, bk−2, bk−3. By applying

Corollary 24 to vk−2, we know that for each j ∈ {1, 2, . . . , k − 3}, there is a forced vertex u j ∈ N(vk−2) such that

α(u j) = j and there is a colourful cycle C j containing the edge vk−2u j, sees exactly the primary colours and contains
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only forced vertices. Note that by Lemma 23, we have β(u j) = b j. Then by applying Lemma 17 to C j and u, for

each j ∈ {1, 2, . . . , k − 3}, we can conclude that β(u) < {b1, b2, . . . , bk−3}. Further, by applying Lemma 17 to the

primary cycle and u, we get that β(u) , bk−1. Therefore, β(u) = bk. By Lemma 4 applied on the vertex vk−1 and

set {bk−3, bk−4, . . . , b1}, there exists a decreasing path vk−1v′
k−3

v′
k−4
. . . v′

1
where α(v′

i
) = i. Each v′

i
, for 1 ≤ i ≤ k − 3,

is a forced vertex since vkvk−1v′
k−3

v′
k−4
. . . v′

i
is a decreasing path from vk to v′

i
. From Lemma 23, we now have that

for each 1 ≤ i ≤ k − 3, β(v′
i
) = bi. Again applying Lemma 4 to vk−1 and the set {k − 4, k − 5, . . . , 1}, we get a

decreasing path vk−1u′
k−4

u′
k−5
. . . u′

1
, for which using similar arguments as before, we can see that u′

i
, for 1 ≤ i ≤ k − 4,

is a forced vertex with β(u′
i
) = bi. Now applying Lemma 4 to vk and the set {k − 2, k − 3}, we get a decreasing path

vkxk−2xk−3, and using similar arguments as before we get that xi, for i ∈ {k−2, k−3}, is a forced vertex with β(xi) = bi.

Note that uvk−2vk−1v′
k−3

v′
k−4
. . . v′

1
is a colourful path, implying that uv′

1
∈ E(G). Also, u′

1
u′

2
. . . u′

k−4
vk−1vk xk−2xk−3 is

a colourful path, and hence u′
1
xk−3 ∈ E(G). Now, uvk−2vk−1u′

k−4
u′

k−5
. . .u′

1
xk−3 is a colourful path, which implies that

uxk−3 ∈ E(G). Further, v′
1
v′

2
. . . v′

k−3
vk−1vk xk−2 is a colourful path, which gives us v′

1
xk−2 ∈ E(G). Therefore, we have

the 4-cycle uv′
1
xk−2xk−3u in G, which is a contradiction.

From Observation 25 and Lemma 26, we have that vk−2 has exactly k − 2 neighbours, which is a contradiction to

Observation 8. This completes the proof of Theorem 7.

4. Conclusion

The results of this paper imply that for any properly coloured graph G with g(G) ≥ χ(G) > 3, there exists an

induced colourful path on χ(G) vertices in G. The question of whether every properly coloured graph G contains an

induced colourful path on χ(G) vertices remains open for the case 3 < g(G) < χ(G).
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