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A burning question in the emerging field of spin-orbit driven insulating iridates, such as Na2IrO3

and Li2IrO3 is whether the observed insulating state should be classified as a Mott-Hubbard insulator
derived from a half-filled relativistic jeff = 1/2 band or as a band insulator where the gap is assisted
by spin-orbit interaction, or Coulomb correlations, or both. The difference between these two
interpretations is that only for the former strong spin-orbit coupling (λ & W, where W is the band
width) is essential. We have synthesized the isostructural and isoelectronic Li2RhO3 and report its
electrical resistivity and magnetic susceptibility. Remarkably it shows insulating behavior together
with fluctuating effective S = 1/2 moments, similar to Na2IrO3 and Li2IrO3, although in Rh4+

(4d5) the spin-orbit coupling is greatly reduced. We show that this behavior has non-relativistic
one-electron origin (although Coulomb correlations assist in opening the gap), and can be traced
down to formation of quasi-molecular orbitals, similar to those in Na2IrO3.

PACS numbers: 75.10.-b,75.10.Jm,71.70.Ej,71.15.Mb

In recent years complex iridium oxides have caused ex-
traordinary interest1–4 since the physics there is governed
by a unique combination of several comparable scales:
one-electron hopping t, spin-orbit coupling (SOC) λ, and
the Hubbard repulsion U . The honeycomb layered com-
pound Na2IrO3, a small-gap antiferromagnetic insula-
tor5,6, has received particular attention. It was suggested
that the adequate description of the electronic behav-
ior of this system is in terms of a half-filled relativistic
jeff = 1/2 band, which becomes a Mott-Hubbard insula-
tor7. However, U in iridates is rather small (1.5–2 eV),
therefore the corresponding band must be rather narrow
for the system to become insulating. In this scenario,
the SOC is the leading interaction in these systems, so
that the t2g bands split into a narrow doublet with the
effective angular moment jeff = 1/2 and a quartet with
jeff = 3/2. In the idealized crystal structure, the one-
electron hopping between the doublet states is fully sup-
pressed, and the effect of one electron hopping is reduced,
by perturbation theory, to the second order in t, that is,
to t2/1.5λ ∼ t/3, where 1.5λ is the energy separation
between the doublet and the quartet.

Recently, some of us8 proposed an alternative descrip-
tion and argued that the one-electron non-relativistic
band structure might be a better starting point for the
description of the electronic behavior of honeycomb iri-
dates than the limit λ ≫ W (band width). In this case
the band structure is dominated by the formation of so-
called quasi-molecular orbitals (QMOs), and consists of
four narrow bands (the width being defined by second-
neighbor hoppings and other secondary one-electron pa-
rameters), spread over a width of ∼ 4t, where t ∼ 0.3
eV is the leading one-electron hopping. The highest and
the lowest bands are singlets, having one state per two
Ir (i.e., one state per spin per unit cell of two formula
units), and the two middle bands are doublets. In the
λ = 0 limit the upper singlet and doublet bands nearly

merge, forming a triplet manifold, while turning on SOC
further splits those bands into three singlets. The upper
two bands barely overlap, forming an incipient (SOC as-
sisted) band insulator, and even a very small U of a few
tenth of an eV is sufficient to open a gap. In this pic-
ture, the material is characterized as a spin-orbit assisted
insulator with the gap enhanced by Hubbard correlation.

In view of the two alternative, and partly oppo-
site, descriptions of the insulating state in these sys-
tems, we present here a comparative analysis between
the electronic behavior of hexagonal iridates and rho-
dates. Specifically, we have synthesized and investigated
Li2RhO3, which shows insulating behavior at low tem-
peratures, similar to Na2IrO3 and Li2IrO3, even though
in Rh4+ (4d5) the SOC is substantially reduced. The
comparison sheds light onto the nature of the insulating
state in these systems.

The paper is organized as follows. We first settle the
terminology between the various definitions of insulators.
We then proceed with electrical resistivity and magnetic
susceptibility data of Li2RhO3 and the description of its
electronic and magnetic properties by means of density
functional theory (DFT) calculations with and without
inclusion of spin-orbit coupling and discuss the similari-
ties and differences of this rhodate system compared to
the hexagonal iridates. As an outlook, we provide some
predictions for the magnetism in the hexagonal rhodates.

The question of whether a particular phase is charac-
terized as a Mott-Hubbard insulator or a band insulator
is largely terminological, as no strict definition or crite-
rion exists to rigorously separate these notions. Some
authors9 further subdivide the classification of insulators
into Peierls, Wilson, Slater or Hund insulators, to men-
tion a few. We feel that this fine tuning is not helpful
here, and will concentrate on the difference between Mott
and band insulators, which is fundamental in the sense
that one cannot go from the former to the latter continu-
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ously. Note that this division does not have a one-to-one
correspondence with the strongly correlated – weakly cor-
related dichotomy; a band insulator, in our terminology,
may have a gap strongly enhanced by correlations, but is
still “topologically connected” with an uncorrelated in-
sulator.

We can illustrate this with a simple example: imag-
ine a crystal of atoms with one half-occupied orbital.
If the crystal has one atom per unit cell, then on the
one-electron level this material can never be insulating.
Upon including an onsite Hubbard U , thereby penalizing
double occupation and hindering itinerancy, it becomes a
Mott insulator10,11, with no coherent quasiparticles. This
happens roughly when U becomes larger than the total
band width W. Now, suppose the same atoms are bound
in dimers forming a molecular crystal. Each dimer de-
velops a bonding and an antibonding state split by some
energy ∆. We now allow inter-dimer hopping. The levels
will broaden into bonding and antibonding bands of the
width W. As long as W < ∆, the material is a band insu-

lator. If ∆ ∼ W, the gap is very small, and the indirect
gap may even become negative. If we add a Hubbard U to
this system (not necessarily larger than W ) the gap will
get larger by some fraction of U (depending on the de-
gree of itinerancy) and this may be a substantial enhance-
ment. We call this a correlation-enhanced band insulator.
For instance, solid Ne is a band insulator, even though
in LDA calculations its gap is severely underestimated
(12.7 eV vs. 21.4 eV).12 This discrepancy is related to
another problem in the density functional theory (DFT),
the so-called density derivative discontinuity, and not to
Hubbard correlations. To first approximation, this dis-
crepancy is inversely proportional to the static dielectric
function.13

An example of a Mott insulator is FeO. It has one
electron in the spin-minority t2g band, and is a metal in
DFT. Coulomb correlations have to destroy entirely the
coherent DFT metallic band crossing the Fermi level, and
the excitation gap appears between the incoherent lower
and upper Hubbard band.14 Note that despite FeO be-
ing a Mott insulator even in the paramagnetic phase, the
simplistic treatment of LDA+U,15 as opposed to more
sophisticated DMFT,14 cannot reproduce insulating be-
havior by symmetry; the cubic symmetry needs to be
broken, for instance by assuming antiferromagnetic or-
dering, after which a gap opens at sufficiently large val-
ues of U . Similarly, in parent compounds of the super-
conducting cuprates there exists one hole in the eg band,
and symmetry does not allow to open a gap in DFT.
These systems are “true” Mott-Hubbard insulators.

Finally, MnO is an example of a (strongly) correlation-
enhanced band insulator. It has a gap between 3d major-
ity and minority bands. In DFT, this gap is driven by the
Hund’s rule, and is ∼ 5I−W, where the Stoner factor I is
∼ 1 eV. The calculated value is 1.4 eV as compared to 4.5
eV in the experiment.16 This material is strongly affected
by Mott physics, and routinely called Mott insulator, yet
one can make a gedanken experiment and gradually re-

duce the Hubbard correlations to zero, whereupon the
gap will drop to its DFT value, without losing the in-
sulating character. Note also that a Mott-Hubbard in-
sulator, in our nomenclature, does not necessarily imply
a strong Hubbard repulsion U ≫ t, where t is a typical
intersite hopping. For instance, TaS2 by no means can
be expected to be a strongly correlated material, and U
cannot be more than a fraction of an eV, and, indeed, at
high temperatures it is a metal. Yet at low temperature
it experiences a charge density wave transition typical
for this structure, which, combined with the spin-orbit
interaction on Ta, splits off, essentially accidentally, an
ultra-narrow band (W ∼ 0.1 eV), and even a minuscule
U suffices to split it into two Hubbard bands.

In Na2IrO3, U is relatively small and the material can-
not be strongly correlated. Moreover, correlations are
suppressed in LDA+U calculations because of substan-
tial delocalization of electrons over Ir6 hexagons, so that
in order to increase the calculated gap from ∼ 0 to ∼ 0.3
eV one has to add U ∼ 4 eV. Furthermore, there is in-
direct evidence of itinerancy in the experiment: the or-
dered magnetic moment even at the lowest temperature is
less than 0.3µB ,

17 in reasonable agreement with the band
structure calculations (≈ 0.5 µB , equally distributed be-
tween spin and orbital moments), while the fully local-
ized jeff model (1µB , split 2:1 between spin and orbital
moments) requires strong fluctuations to suppress the or-
dered moment.18

It is often argued that the experimentally measured19

spin-orbit correlation factor, 〈L · S〉 , is consistent with
one hole in the jeff = 1/2 state, and thus proves its ex-
istence. However, this factor is mostly collected from
the eg holes,20,21 and is well described by band structure
calculations.

A comparison of honeycomb iridates with the isostruc-
tural and isoelectronic Li2RhO3 should be very instruc-
tive, because if the former are SOC Mott insulators like
Sr2IrO4,

3,22 then a Rh analogue (with much weaker SOC)
should be metallic, just as Sr2RhO4.

23 If, on the other
hand, the formation of quasi-molecular orbitals triggers
the insulating behavior, then a larger U in Li2RhO3 will
likely recreate the same physics as for Na2IrO3, i.e. a
correlation-enhanced band insulator.

We have synthesized Li2RhO3 polycrystals by the solid
state reaction method from stoichiometric amounts of
Li2CO3 and Rh powder. The mixture has several times
been pelletized and reacted in O2 flow at temperatures up
to 850◦C. Powder X-ray diffraction (XRD) scans do not
reveal any evidence for secondary phases and are simi-
lar to those reported in Ref. 24, see Fig. 3. Magnetic
susceptibility and (four-probe) electrical resistivity have
been determined utilizing commercial (Quantum Design)
instruments.

As presented in Fig. 1 (a), Li2RhO3 shows clear in-
sulating resistivity behavior, which follows the same
variable-range hopping dependence as found in Na2IrO3

or Li2IrO3.
5,25 Previous resistivity measurements at

higher temperatures found an activation gap of ∼
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FIG. 1: (Color online) Temperature dependence of the elec-
trical resistivity (a) and magnetic susceptibility (b) of poly-
crystalline Li2RhO3. Inset (c) displays the resistivity data

(on log scale) vs. T−1/4. The line in (b) is a Curie-Weiss
(CW) fit χ(T ) = χ0 + C/(T −ΘW with χ0 = −1.235× 10−4

cm3/mol and ΘW = −59 K. The inset (d) shows ∆χ−1 vs T
with ∆χ = χ(T )− χ0, and the CW fit. Inset (e) displays the
same data as in (b) for the low-temperature regime.

80 meV.24 The magnetic susceptibility (Fig. 1 (b)) is
Curie-Weiss (CW) like, with a small kink at 6 K, likely
due to some spin-glass freezing, which needs to be inves-
tigated in future measurements. The CW fit between 100
and 300 K corresponds to µeff = 2.2µB . Similar results
have been recently reported by Luo et al.26

Now, we need to establish the crystal structure. Lab
powder XRD (PWXD) is in not very sensitive to the O-
positions, which hinders structural determination. For
instance, initial powder XRD refinement for Na2IrO3
5 was unable to distinguish between C 2/c and C 2/m
structure but later measurements on a single crystal,
showed that C 2/m is the most stable crystal structure
with well ordered regular honeycomb planes.17 Also for
Li2RhO3 there has been discussion about Li/Rh site ex-
change 24. However, we have found that site exchange
and stacking faults have similar effects on powder XRD
Rietveld refinement. Thus, from the present data it is
very hard to distinguish between them. On the other
hand, single crystal XRD on Na2IrO3 by Choi et al.
found evidence that stacking faults are the leading de-
fects rather than Na/Ir site exchange.17.

For that reason, we have used (well-determined) unit-
cell parameters for Li2RhO3, and performed first princi-
ples optimization of the internal parameters.27 We note
the same procedure yielded excellent agreement with the
refined crystal structure of Na2IrO3.

17 The final struc-
ture is presented in Table I and shown in Fig. 2. This
refined structure is consistent with the lab powder XRD
data (Fig. 3).
Despite the overall low crystal symmetry, the lo-

cal symmetry of the Rh2Li planes is rather high: the

TABLE I: Optimized crystal structure of Li2RhO3, using ex-
perimental lattice parameters (a = 5.123 Å, b = 8.836 Å,
c = 5.885 Å, β = 125.374◦) and space group C 2/m. The
nearest neighbor Rh-Rh and Rh-O distances as well as Rh-
O-Rh angles are given. Note that the hexagon structure is
not perfect and there are two Rh-Rh and three Rh-O nearest
neighbours.

atom position x y z

Rh 4h 0 0.333 1/2

Li 2a 0 0 0

Li 4g 0 0.660 0

Li 2c 0 0 1/2

O 8j 0.516 0.327 0.263

O 4i 0.002 1/2 0.7380

dist./angle 1 dist./angle 2 dist. 3

Rh-Rh 2.951 Å 2.952 Å

Rh-O 2.023 Å 2.030 Å 2.021 Å

Rh-O-Rh 93.2◦ 93.8◦

FIG. 2: (Color online) Structure of Li2RhO3, viewed along c∗

direction.

FIG. 3: (Color online) Comparison of observed (black) and
calculated (red) powder XRD spectra for Li2RhO3 (see text).
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TABLE II: Comparison of the first principles hopping ampli-
tudes in Li2RhO3 and Na2IrO3. The notations are explained
in detail in Ref. 21. All hoppings t and onsite energies µ are
given in meV.

Na2IrO3 Li2RhO3

µxy -448.8 -385.8

µxz,yz -421.5 -385.7

txy→xz,yz
0 -27.8 -18.8

txz→yz
0 -23.1 -15.5

Distance 3.130 Å 3.138 Å 2.951 Å 2.952 Å

t1O 269.6 264.4 211.8 197.5

t1σ -20.7 25.4 -89.0 -106.4

t1⊥
∗ -25.6/-21.4 -11.9 -15.9/-10.5 -13.0

t1‖
† 47.7/30.0 33.1 58.3/57.2 60.4

Distance 5.425 Å 5.427 Å 5.088 Å 5.096 Å

t2O -75.8 -77.0 -77.2 -78.7

t2a
† -3.5/-0.6 -1.4 -4.4/-5.3 -4.3

t2b -1.5 -1.4 0.1 1.4

t2c -36.5 -30.4 -24.9 -24.1

t2d
∗ 12.5/10.2 9.3 18.4/17.9 18.7

t2e
∗ -21.4/-18.6 -19.0 -7.4/-7.8 -7.6

∗For the shorter distance, the first number corresponds to

xy → xz, xy → yz transitions and the second to xz → yz

transitions.
†For the shorter distance, the first number corresponds to

xy → xy transitions and the second number to xz → xz, yz → yz

transitions.

hexagons are nearly ideal and the Rh-O-Rh angles are
nearly the same and relatively close to 90◦. This makes
it a showcase for the quasi-molecular orbital concept.8

To this end, we have performed first principle calcula-
tions using the WIEN2k code,28 and projected the results
using a standard Wannier function projection technique
as proposed by Aichhorn et al.29 and further developed
in Ref. 30. The resulting tight-binding parameters are
shown in Table II.
As we see, the main condition for the QMO picture

(dominance of the O-assisted nearest neighbor hoppings)
is fulfilled. Projecting the density of states (DOS) onto
individual QMOs we see that, although it does not sepa-
rate into isolated manifolds as in Na2IrO3, it is composed
of overlapping QMOs as shown in Fig. 4.
We have also performed spin-polarized calculations

with various spin configurations31 (Fig. 5 (a)). We were
not able to stabilize a Néel order (magnetic moments
collapse), but the ferromagnetic (FM) and two antifer-
romagnetic phases, the “stripy” and the “zigzag” phase,
are all stable, with the ground state practically degener-
ate between the two AFM states. The FM state has a
small advantage in the calculations, which is lost upon
application of U (see below). The calculated FM state,
just as in Na2IrO3, is a half-metal with M = 1µB/Rh.
One has to keep in mind that at small U the material
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FIG. 4: (Color online) Nonrelativistic nonmagnetic band
structure and density of states of Li2RhO3, projected onto
quasi-molecular orbitals, as described in Ref. 21.

is metallic, which promotes ferromagnetism, and that
LDA/GGA include spurious Hund’s rule self-coupling of
an orbital with itself. In particular, for the ≈ 90o geom-
etry, as in this case, the Hund’s rule coupling on oxygen
is not supposed to promote ferromagnetism18,21 but in
LDA/GGA it gives additional energetical advantage to
the ferromagnetic state of the order of 3IOm

2
O/4 ≈ 3 ·1.6

eV ×0.12/4 ≈ 12 meV per Fe, where IO = 1.6 eV is
the Stoner factor32, mO = 0.1 the calculated magnetic
moment of O, and there are three oxygens per Fe.
Neither the nonmagnetic state (Fig. 4) nor any of the

magnetic states considered (FM, stripy and zigzag) are
insulating. Including SOC has little effect on either en-
ergetics or proximity to an insulator (Figs. 5, 6 and 7).
On the other hand, experimentally this material ap-

pears to be insulating. It is natural to attribute this fact
to the effect of Hubbard U , which in 4d metals is about
3-4 eV, twice as large as for 5d systems. Even though
LDA+(on-site)U is a rather naive way to tackle correla-
tions in a QMO system, we have tried, faut de mieux,
to apply a standard LDA+U correction to our calcula-
tions.33 As expected, for U & 3 eV we obtain an insu-
lator for both AFM configurations. In Figs. 6 and 7 we
show the evolution of the density of states (DOS) with
the Hubbard U for the zigzag and stripy configurations,
respectively. Besides, adding U produces somewhat less
obvious effects. First, it destabilizes the FM structure,
making all three magnetic structures degenerate within
the computational accuracy (in calculations with SOC
the FM state is a few meV lower in energy, but, as men-
tioned, DFT always slightly overestimates this tendency
because it includes Hund’s rule self-interaction on O).
Second, the Hubbard U enhances the SOC, increasing
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FIG. 5: (Color online) Energy of different magnetic config-
urations in eV/Rh relative to the nonmagnetic state, as a
function of (U − J). Energies at (U − J) 6= 0 are offset by
1.05(U − J). The top panel (a) does not include spin-orbit
coupling, the bottom panel (b) does.

the calculated orbital moments. The spin moment also
positively correlates with U , but the dependence is much
weaker. For instance, for the FM state the moment inside
the Rh muffin tin sphere increases from 0.58 to 0.66µB

as U increases from 0 to 5 eV.

An important point to make is that, as one can expect
from the small value of the SOC, it is not essential for ob-
taining an insulating state; an antiferromagnetic order,
however, is, just as in such prototype Mott insulators as
FeO and CoO. In fact, sometimes in LDA+U calculations
including SOC is necessary for reproducing the insulating
behavior, even though a material is obviously not rela-
tivistic. This is an artifact resulting from the inability of
LDA+U to describe Mott insulators in the paramagnetic
case. One of the pathologies that LDA+U shares with
LDA is absence of local magnetic fluctuations34. In both
methods instead of a paramagnetic state, i. e. a state
with disordered local moments, a non-magnetic state,
with no moments at all is considered. As a result, in such
prototype strongly correlated materials as for instance 3d
oxides a metallic state is protected by symmetry, unless
some magnetic ordering is included (in some cases even
the ferromagnetic order suffices, in others an antiferro-
magnetic ordering is needed), and LDA+U fails to re-
produce the paramagnetic insulating phase. Li2RhO3 is
a similar case. In the nonmagnetic calculations there
are band crossings protected by symmetry, that is to
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FIG. 6: (Color online) Evolution of the density of states with
the Hubbard U in the zigzag phase without spin orbit coupling
(left panels) and with spin orbit coupling (right panels). We
use JH = 0.7 eV throughout.

say, the best one can possibly achieve within LDA+U,
even with an arbitrarily large U , is a zero-gap semicon-
ductor. SOC, even infinitesimally small, removes this
protection (the protected bands can now hybridize), and
now a sufficiently large U can open a full gap. Obvi-
ously, this fact does not tell us anything about the real
role of the SOC, but only highlights shortcomings of the
LDA+U method.35 In fact, while the physics of Na2IrO3

and Li2RhO3 compounds is similar, the role of interac-
tions is reversed. In the former, strong SOC renders the
material nearly insulating already in the paramagnetic
phase, and the relatively weak correlations only help the
existing tendency. In the latter, for U = 0 there ex-
ists already a sizable separation between the upper two
bands but they are too wide and still overlap, forming
a negative gap (see Fig. 4). Indeed, strong correlations
are essential to open an actual gap, and the way to take
correlations into account in LDA+U is to include mag-
netism from the very beginning. This scenario with the
preexistence of a band separation is in contrast to the
case of Mott insulators and corresponds to a correlated
band insulator.

It is worth noting that the “213” honeycomb structure
is peculiar in the sense that in the nearest neighbor ap-
proximation the highest band is always a doublet, inde-
pendent of the relative strength of the SOC. In the strong
SOC limit this doublet is the relativistic jeff = 1/2. In
the opposite limit, this doublet is an A1g molecular or-
bital, and the band structure can be characterized as
incipient band insulator. Mott-Hubbard correlations ob-
viously enhance the tendency to insulating behavior, but
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FIG. 7: (Color online) Evolution of the density of states with
the Hubbard U in the stripy phase, without spin orbit cou-
pling (left panels), and with spin orbit coupling (right panels).
We use JH = 0.7 eV throughout.

generally speaking are not always necessary. In real ma-
terials beyond this approximation the order of states may
change, in which case SOC becomes absolutely essen-
tial (cf. Na2IrO3), or band width may become too large
for such a simplistic treatment, but the fact that the
most basic model has this unique feature is very impor-
tant for understanding the physics of these honeycomb
compounds. For a more detailed discussion we refer the
reader to Ref. 21.
The observation that three different magnetic configu-

rations, FM, zigzag and stripy, with ordered moments on
Rh (∼0.5-0.7 µB) independent of the magnetic pattern,
are very close in energy indicates considerable frustra-
tion. Structural disorder is then expected to push the
system towards a spin-glass regime.

These results show an important similarity between
the 5d compound Na2IrO3 and the isostructural and iso-
electronic 4d compound Li2RhO3, despite a much larger
Hubbard U and much smaller spin-orbit λ in the latter.
This similarity suggests that properties of these materials
are largely controlled by the non-relativistic, one-electron
physics, namely the formation of quasi-molecular or-
bitals, while the role of Coulomb correlations and SOC
lies primarily in enhancing already existing tendencies
(in particular, toward insulating behavior). As a word
of caution, we want to emphasize that while our results
point toward these systems being band (Slater) insula-
tors rather than Mott insulators, this does not indicate
that they are weakly correlated or that they are local-
ized rather than itinerant. On the other hand, our results
suggest that local antiferromagnetism is an important in-
gredient in the formation of an insulating state and that
Coulomb correlations are instrumental in enhancing the
insulating gap.
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