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We study the Persistence properties of the T = 0 coarsening dynamics of one dimensional q-
state Potts model using a modified mean-field approximation (MMFA). In this approximation, the
spatial correlations between the interfaces separating spins with different Potts states is ignored,
but the correct time dependence of the mean density P (t) of persistent spins is imposed. For this
model, it is known that P (t) follows a power-law decay with time, P (t) ∼ t−θ(q) where θ(q) is the
q-dependent persistence exponent. We study the spatial structure of the persistent region within
the MMFA. We show that the persistent site pair correlation function P2(r, t) has the scaling form

P2(r, t) = P (t)2f(r/t
1
2 ) for all values of the persistence exponent θ(q). The scaling function has

the limiting behaviour f(x) ∼ x−2θ (x ≪ 1) and f(x) → 1 (x ≫ 1). We then show within the
Independent Interval Approximation (IIA) that the distribution n(k, t) of separation k between
two consecutive persistent spins at time t has the asymptotic scaling form n(k, t) = t−2φg(t, k

tφ
)

where the dynamical exponent has the form φ=max( 1
2
, θ). The behaviour of the scaling function

for large and small values of the arguments is found analytically. We find that for small separations
k ≪ tφ, n(k, t) ∼ P (t)k−τ where τ=max(2(1 − θ), 2θ), while for large separations k ≫ tφ, g(t, x)
decays exponentially with x. The unusual dynamical scaling form and the behaviour of the scaling
function is supported by numerical simulations.

I. INTRODUCTION

In recent times, the notions of Persistence and the asso-
ciated Persistence exponent has become one of the active
topics of research in Non-equilibrium Physics [1]. In gen-
eral, the persistence probability P (t) is the probability
that a stochastic variable φ(t) remains above or below a
certain arbitrary value (say, its initial value) for a time
interval [0 : t]. The idea of Persistence is particularly rel-
evant in coarsening systems where P (t) has the natural
interpretation of being the fraction of space in the system
which remains in the same phase, starting from a random
initial configuration. In these systems (as in some other
systems also) P (t) typically decays as a power-law at
large t, with an exponent that is non-trivial to compute
and does not appear to be simply related to other known
exponents that characterize the process.

The coarsening dynamics of the one dimensional q-
state Potts model at zero temperature is one of the few
cases where the Persistence exponent θ(q) is known ex-
actly. The solution was provided by Derrida et.al through
a mapping of the process to a coagulation model in steady
state [2]. It was shown that at late times t, well beyond
the time scale of equilibration, the fraction of persistent
spins left in a finite system of linear dimension L scale
as Pq(t ≫ L2, L) ∼ L−2θ(q), where θ(q) is given by the
non-trivial expression

θ(q) = −1

8
+

2

π2

[

cos−1

(

2− q

q
√
2

)]2

. (1)

For times t ≪ L2, it follows that Pq(t) ∼ t−θ(q). An
interesting question in this context is about the spatial
distribution of spins which are persistent up to any given
time t. Clearly, in a many-body process like the time
evolution of Potts model, the probability that a given
spin is persistent is closely linked to the state of other
spins. This inter-dependence of spins is crucial in that it
makes the time evolution at any single site strongly non-
Markovian, which makes the computation of the Persis-
tence exponent highly non-trivial. A study of the spatial
aspects of the Persistence problem is therefore impor-
tant from the point of view developing an intuitive un-
derstanding of the phenomenon, and also illuminates the
interplay between Persistence decay and the underlying
domain coarsening process.
The spatial distribution of persistent sites and its time

evolution have been studied previously through numeri-
cal simulations in one dimensional diffusion equation [3],
q-state Potts model [4–7] , two dimensional Ising model
[8] and one dimensional Ising model with parallel dynam-
ics [9]. An analytic study using a rate equation approach
under the Independent Interval Approximation(IIA) has
been carried out for one dimensional A + A → ∅ model
which is closely related to 1D Ising model [6]. It is
now generally understood from physical arguments and
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simulations that for a coarsening process in d dimen-
sions where characteristic length scale has the power-law
growth L(t) ∼ t1/z , the set of persistent sites forms a
fractal structure with fractal dimension df = d− zθ over
length scales r ≪ t1/z [7,10]. The distribution is ho-
mogeneous beyond this length scale. Furthermore, since
df ≥ 0, the distribution is expected to be homogeneous
over all length scales if θ > d/z. This has important
consequences for systems like the Potts model where θ
changes with the Potts state q. In particular, for Potts
model in d = 1, Bray and O’Donoghue [7] argued that a
transition from fractal to homogeneous distribution oc-
curs as θ crosses 1

2 . This transition is also marked by an
abrupt change in the dynamical exponent characterizing
the separation between persistent sites. The character-
istic length scale was conjectured to have the unusual
dynamical scaling form L(t) ∼ tφ with φ = max(12 , θ).
This conjecture based on physical arguments was sup-
ported by numerical simulations [7].
In this paper, we use a Mean-Field approach to address

the problem of spatial distribution of persistent sites in
q-state Potts model. The essential idea behind this ap-
proach is as follows. It is well-known that the T = 0
coarsening dynamics of the q-state Potts model can be
mapped to a reaction-diffusion process. In this process,
the interfaces between different species of Potts spins
are represented by diffusing particles A, which annihilate
or coagulate upon meeting with q-dependent probabili-
ties. In the mean field approach, these diffusing particles
are treated as homogeneously distributed, with (time-
dependent) density equal to the average density in the
original reaction-diffusion problem. This approach has
been discussed in some earlier works as a heuristic argu-
ment [11] and as a toy model for persistence [12]. We
argue that this approach yields a lower bound for the
Persistence exponent in the Potts model. We then con-
struct an artificial model which is devoid of spatial cor-
relations among diffusing particles, but with persistence
exponent tuned to be exactly equal to the Potts model
value. We refer to this model as the Modified Mean-Field
Approximation (MMFA) and use this approximation to
study the spatial distribution of persistent sites in q-state
Potts model.
We outline our main results at this point. Within the

MMFA, we show analytically that the correlation length
for the spatial distribution of persistent spins scales as
ξ(t) ∼ t

1
2 and the equal time pair correlation function

P2(r, t) (defined as the probability that the spin at ori-
gin and the point r are persistent at time t) has the
scaling form P2(r, t) = P (t)2f(r/

√
t) for any value of

θ. This shows that the persistent spins have a fractal
distribution with df = 1 − 2θ over length scales r ≪ t

1
2

when θ < 1
2 , but df = 0 when θ ≥ 1

2 . We find that the
characteristic length scale of the spatial distribution of
persistent spins has the unusual scaling form L(t) ∼ tφ

where φ=max(12 , θ), in agreement with the conjecture in

[7]. The empty interval distribution itself has the scaling
form n(k, t) = L(t)−2g[t, k/L(t)], where g(t, x) ∼ t−ψx−τ

for x≪ 1 and decays exponentially with x when x≫ 1.
The exponents ψ and τ depends on θ through the rela-
tions ψ = θ(2θ − 1)H(θ − 1

2 ) and τ=max[2(1 − θ), 2θ],
where H(x) is the Heaviside step function. We support
these results with numerical simulations.
The paper is arranged as follows. In the next section,

we outline the mean field approach. In Section III, we in-
troduce the MMFA and compute the pair correlation and
Empty Interval Distribution of persistent sites to charac-
terize their spatial distribution. These predictions are
compared with the results of numerical simulations in
the q-state Potts model in Sec. IV. We summarize our
results and present our conclusions in Sec. V.

II. THE MEAN-FIELD APPROXIMATION

In the zero temperature coarsening dynamics of q-state
Potts model in d = 1, the interfacial points between dif-
ferent species of Potts spins perform independent ran-
dom walks on the lattice and annihilate each other with
probability 1

q−1 ( q−2
q−1 ), or coagulate with probability q−2

q−1 .
In the process, persistent sites are ‘wiped out’, and the
surviving random walkers build up spatial correlations
among themselves. The distribution of intervals between
the surviving random walkers at any (sufficiently late)
time t is described by a (stationary) scaling function
which is known exactly for all values of q [13]. The aver-
age density n(t) at time t decays as

n(t) ≃ q − 1

q

1√
2πt

(2)

asymptotically [13]. The essential idea behind the
mean field (MF) approximation is to treat the random
walkers as forming a homogeneous background of average
density n(t), as far as the persistent sites are concerned.
We define the Persistence probability P (t) as the proba-
bility that the site at the origin is unvisited by any walker
till time t. Then, the probability that the site the prob-
ability that the site is visited by a walker between time t

and t+ dt is −∂P (t)
∂t . Let R(x, t) be the probability that

the site at origin is visited by a walker for the first time at
time t, whose initial position was x at t = 0. Within the
MF approximation, any walker would survive with prob-
ability n(t), and the probability that it will make a first

visit to origin at time t is given by q(x, t) =
√

2
π

x
t3/2

e−
x2

2t

[14]. It follows that R(x, t) = n(t)q(x, t). We now in-
tegrate R(x, t) over all initial positions x and multiply
by the probability that the origin is persistent at time t,
which is simply P (t). So we find

∂P (t)

∂t
= −P (t)n(t)K1(t) d = 1 (3)
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where K1(t) =
∫∞
−∞ q(x, t)dx is the Smoluchowski con-

stant [15] in d = 1. After substituting for q(x, t) and n(t),

we find ∂P (t)
∂t = − θ∗

t P (t), so that P (t) ∼ t−θ
∗(q), and

θ∗(q) =
√
2
π
q−1
q is the Persistence exponent within the

MF model [12]. It is interesting to compare the mean
field prediction for θ with the exact value of the expo-
nent. For q = 2, θ∗(2) ≃ 0.225, while the exact value
from Eq.1 is 3

8 . For the q = ∞ case, the MF model pre-
dicts θ∗(∞) ≃ 0.45, which is to be compared with the
exact value θ(∞) = 1. Upon extending the comparison
to the entire range of values of q, it is clear that the mean
field treatment consistently under-estimates the value of
θ.
We now argue that θ∗(q) is, in fact, a lower bound

for θ(q). In the mean field approach discussed so far, it
is assumed that the random walkers disappear from the
lattice at random at such a rate so that their average
density falls as n(t). The actual reaction-diffusion pro-
cess is quite different, because only walkers which come
very close to another walker are likely to be removed.
Clearly in regions of space where walkers come close to
each other, they are likely to visit the same site again
and again. This effect is much more within the mean
field approach, where the walkers actually pass through
each other, possibly several times before disappearing.
Thus, it is plausible that for the same average density of
walkers, a larger number of persistent sites will be vis-
ited in the actual reaction-diffusion model, compared to
its mean field analogue. Since this is true for all times,
the average density of persistent sites in mean field theory
will be higher than the same in the actual Potts model
dynamics. This would naturally imply that

θ∗(q) ≤ θ(q) (4)

Interestingly, we show now that the Mean Field ar-
gument presented above yields the correct value for the
Persistence exponent for A+A→ ∅ model in d = 2. This
is not surprising, since for this model, the upper critical
dimension is dc = 2, and the mean field treatment be-
comes exact above this dimension. It can be shown that
in d = 2, the probability that a random walker starting at
an an arbitrary point crosses a circle of radius a around
the origin for the first time at t is given by the expression
[16]

K2(t) ≃
4πD

log(4Dt/a2)
t≫ a2/D (5)

which is the analogue of Smoluchowski constant in d =
2. The asymptotic particle density decay for A+A→ ∅
model in d = 2 has the form n(t) ≃ 1

8π
log(Dt)
Dt [17]. Upon

extending the MF arguments presented previously, we
find that

∂P (t)

∂t
= −P (t)n(t)K2(t) d = 2 (6)

After substituting for n(t) and K2(t), and taking the

limit a → 0, we find that P (t) ∼ t−
1
2 so that θ∗ = 1/2

in d = 2. This result is exact, as has been shown by a
rigorous field-theoretic calculation [11].
We thus observe that while the mean field approach, in

general, gives only a lower bound for the persistence ex-
ponent, it correctly identifies the essential features that
brings about this power-law decay, ie., the diffusive mo-
tion of interfacial points and the 1√

t
decay in their over-

all density. In the following sections, we use a slightly
modified version of this treatment to study the spatial
distribution of persistent sites in q-state Potts model.

III. THE MODIFIED MEAN FIELD
APPROXIMATION (MMFA)

Our purpose is to use the mean field approach to study
the spatial distribution of persistent spins in the q-state
Potts model, and in particular, to understand the transi-
tion from fractal to homogeneous distribution as θ crosses
1
2 . However, it may be noted that in the mean field
approximation to the dynamics of the Potts model, the
largest value of θ (attained at q = ∞) is 2√

π
≃ 0.45 which

is less than the transition value 1
2 . This problem is cir-

cumvented by defining an artificial model where we define
the diffusing particles as non-interacting random walkers,
who can pass through each other. The model also allows
for multiple occupancy of lattice sites. The dynamics
consists of random walkers being picked at random and
taken out of the lattice at a time-dependent rate, which
is tuned to produce power-law decay P (t) ∼ t−θ

′

with
any arbitrary θ′. From the arguments presented in the
previous section, it is obvious that this would be the case
if the average density were to decay as n(t) ∼ √

π
2
θ′√
t

asymptotically. By construction, this model is devoid
of spatial correlations among reacting particles (ie., it is
still mean field) but θ′ is now arbitrary. If we now choose
θ′ = θ(q), this model is an approximation to the q-state
Potts model, with the simplifying feature that the spa-
tial correlation between interfacial points is now absent.
We shall refer to this model as the Modified Mean Field
Approximation (MMFA) for the original Potts model.

A. Pair correlation for persistent spins within the
MMFA

In this section, we compute the equal time pair corre-
lation function for persistent spins in q-state Potts model
under the MMFA. We define P2(r, t) as the probability
that both the site at origin and the site at r > 0 are
persistent at time t. Our purpose is to compute P2(r, t)
for various r.
The generalization of Eq.3 to this case is

3



−∂P2(r, t)

∂t
= 2P2(r, t)

∫ r

−∞
Rr(x, t)dx (7)

where Rr(x, t) is the probability that a particle with
initial position x(−∞ < x < r) will make a first visit
to the origin at time t, without ever crossing r in the
interval [0:t]. The factor 2 in front takes into account
the probability that either of the sites could be reached
by one of the diffusing particles. Unlike the first case,
Rr(x, t) is now different for x < 0 and 0 ≤ x < r. For
x < 0, the constraint of no crossing at r is irrelevant for
the computation of Rr(x, t) , since to reach r, the particle
would have to cross the origin first. So Rr(x, t) = R(x, t)
simply for x < 0, and so

∫ 0

−∞
Rr(x, t)dx =

θ

2t
(8)

For x > 0, this is no longer true, and Rr(x, t) needs to
be computed separately. The quantity that we need here
is qr(x, t), the probability that a diffusing particle whose
position at t = 0 is x, will reach the origin for the first
time at t, without ever crossing the point r in between.
Then Rr(x, t) = n(t)qr(x, t). To find qr(x, t), let us use
the following standard method. Consider a random walk
starting from 0 < x < r at t = 0 with absorbing barriers
at 0 and r. If the probability distribution of the position
z of the walker at time t is ux(z, t), then

qr(x, t) =
∂ux(z, t)

∂z
|z=0 (9)

The expression for ux(z, t) is known exactly, and the
asymptotic form at large t [14] is

ux(z, t) =
1√
2πt

∞
∑

k=−∞

e−
(z−x−2kr)2

2t − e−
(z+x−2kr)2

2t (10)

from which, we find

qr(x, t) =
1√
2πt

∞
∑

k=−∞

x+ 2kr

t
e−

(z−x−2kr)2

2t −

x− 2kr

t
e−

(z+x−2kr)2

2t (11)

We note that for r ≫ t
1
2 , the k = 0 mode is the

dominant term in the sum, and this gives qr(x, t) ≈
√

2
πt3xe

− x2

2t + smaller terms that vanish as r
t1/2

→ ∞.

Clearly in this limit, we recover the r = ∞ term, as we
should. It then follows that

∫ r

0

Rr(x, t)dx =
θ

2t
G

(

r√
t

)

(12)

where

G(x) = 1− η +
∞
∑

k=1

2η4k
2 − η(1+2k)2 − η(1−2k)2 (13)

with η = e−
x2

2 . After substitution of Eq.8 and Eq.12
in Eq. 7, we find

x

G

(

x

)

6543210

2

1.5

1

0.5

0

FIG. 1. Plot of G(x) vs x

∂P2(r, t)

∂t
= −2P2(r, t)

θ

2t

[

1 +G(
r√
t
)

]

(14)

which admits a scaling solution of the form

P2(r, t) = P (t)2f(
r√
t
) (15)

and the scaling function f(x) is given by the following
expression.

x

2

∂f

∂x
= −θf(x) [1−G(x)] (16)

Let us now consider the limiting behaviour of the scal-
ing function for x≪ 1 and x≫ 1. In the first case, it is
clear from Fig.1 that G(x) ≈ 0, and so x

2
∂f
∂x = −θf(x),

which implies that f(x) ∼ x−2θ as x → 0. In the op-
posite extreme G(x) → 1 as x → ∞, and so x

2
∂f
∂x ≈ 0,

which means that f(x) approaches a constant value in
this limit. It is further clear that, from the definition
of the scaling function as given by the expression Eq.15,
this constant is unity, since we expect P2(r, t) → P (t)2

as r → ∞. For convenience of later calculations, we ap-
proximate the scaling function as

f(x) = a2θx−2θ : x ≤ a

f(x) = 1 : x > a (17)

where a is a number, of order unity.
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We see that under the MMFA, the pair correlation
function has a scaling form which is same for all values
of θ, with power-law decay P2(r, t) ∼ P (t)r−2θ for short

distances r ≪ t
1
2 . As is well-known, power law decay of

pair correlation function points to the underlying scale in-
variance of the spatial distribution of the persistent spins.
This is characteristic of a fractal distribution under some
circumstances. To see this, let us first define C(r, t) =
P (t)−1P2(r, t), which is the probability of finding a per-
sistent spin at a distance r from another persistent spin.

Now, the integral M(R, t) =
∫ R

1 C(r, t)dr is the total
number of persistent spins within a radius R of a persis-
tent spin. Clearly, from the scaling form described above,
M(R, t) ∼ Rdf for R ≪ t

1
2 , where df =max(1 − 2θ, 0).

For R ≫ t
1
2 , we find that M(R, t) ≃ RP (t), which is

simply a homogeneous distribution. Thus, if we look at
length scales R ≪ t

1
2 , there is a fractal structure when

θ < 1
2 . However, when θ ≥ 1

2 , this scale-invariant struc-
ture is replaced by a few isolated sites, whose number
does not grow with the length scale of observation.

Clearly, the spatial distribution of persistent spins un-
dergoes a transition as θ crosses 1

2 . Indeed, if we consider
time scales beyond equilibration time t ≫ L2, for θ < 1

2
the total number of persistent spins left in the system
scales as L1−2θ, whereas for θ ≥ 1

2 , there are only a finite
number of persistent spins left. This important differ-
ence is not adequately reflected in the pair correlation
function, which has the same scaling form for all values
of θ. In the next section, we study another quantity to
characterize the spatial distribution which undergoes a
rather significant change in its scaling properties across
the transition. This quantity is the empty interval dis-
tribution, which is one of the standard tools in the study
of one-dimensional reaction-diffusion processes.

B. The Empty Interval Distribution

An empty interval, in our convention, is the separation
between two consecutive persistent sites. The empty in-
terval distribution (EID) n(k, t) is defined as the number
of such intervals of length k at time t. For convenience,
we also divide this quantity with the system size N so
that n(k, t) satisfies the following normalization condi-
tions.

∫ ∞

1

n(k, t)dk = P (t) ;

∫ ∞

1

kn(k, t)dk = 1 (18)

Computing the EID directly, even under the mean field
approximation, is non-trivial. Instead we shall compute
it from the pair correlation function using the Indepen-
dent Interval Approximation (IIA), where the lengths of
successive empty intervals are considered as independent
random variables. The IIA has been a valuable tool in

the study of one-dimensional problems, and has been suc-
cessfully applied to study spatial distribution of persis-
tent spins in A + A → ∅ model. Under the IIA, the
relation between n(k, t) and P2(r, t) is

P2(r, t) = n(r, t) + P (t)−1

∫ r

1

dxn(x, t)P2(r − x, t) (19)

It is convenient to express this relation in terms of
the Laplace transforms C̃(p, t) =

∫∞
1 C(r, t)e−prdr and

ñ(p, t) =
∫∞
1
n(s, t)e−psds, where C(r, t) was defined in

the previous section. Under these transformations, Eq.19
maybe expressed in the form

ñ(p, t) =
P (t)C̃(p, t)

1 + C̃(p, t)
(20)

From the scaling form for P2(r, t) given by Eq.15 , we
find that

C̃(p, t) = P (t)
√
tI(q, t) (21)

where q = p
√
t, and I(q, t) =

∫∞

t−
1
2
f(x)e−qxdx The

lower limit is put as t−
1
2 instead of zero to take care of

possible small argument divergence in the scaling func-
tion.
Let us first consider the case where θ < 1

2 : In this
case the scaling function f(x) is integrable, so we put
the lower limit in the previous equation as zero. Using
Eq.17, we find that

I(q, t) = a2θq2θ−1γ(1− 2θ, qa) +
1

q
e−qa ; θ <

1

2
(22)

where γ(α, x) =
∫ x

0
e−ttα−1dt is the incomplete

Gamma function. After substituting in Eq.20 and Eq.
21, and taking the t→ ∞ limit (keeping q fixed), we find

ñ(p, t) = t−
1
2

[

P (t)t
1
2 − q

a2θq2θγ(1− 2θ, qa) + e−qa

]

(23)

It follows that

n(k, t) = t−1h

(

k

t
1
2

)

(24)

so that

ñ(p, t) = t−
1
2 [t

1
2P (t)− h1(q)] (25)

which has the same form as Eq.23, and h1(q) =
∫∞
0
h(x)[1− e−qx]dx. After integrating by parts, we find

h1(q) = −G(∞) + q
[

lim
x→0

xG(x) + G̃(q)
]

(26)

where G(x) =
∫∞
x
h(y)dy and G̃(q) =

∫∞
0
G(x)e−qxdx.

We assume that G(x) is integrable, so that
limx→0 xG(x) = 0 and G(∞) = 0. Finally we have
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G̃(q) =
1

a2θq2θγ(1− 2θ, qa) + e−qa
(27)

Now we may try to deduce the behaviour of the func-
tion G(x) at large and small arguments from its Laplace
transform, given by the previous equation. To find the
behaviour of G(x) near x = 0, we use the standard for-
mula [18]

limt→0t
−ρg(t) = lims→∞

sρ+1g̃(s)

ρ!
; ρ > −1 (28)

where g̃(s) is the L.T of g(t). Now, for large q,

γ(1−2θ, qa) ≃ Γ(1−2θ), so that G̃(q) = a−2θq−2θ

Γ(1−2θ) as q →
∞. It follows that limx→0x

1−2θG(x) = a−2θ

(2θ−1)!Γ(1−2θ)

from which we find

G(x) ∼ a−2θx2θ−1

(2θ − 1)!Γ(1− 2θ)
x→ 0 (29)

and, after using the relation h(x) = −∂G
∂x ,

h(x) ∼ x−2(1−θ) ;x→ 0 (30)

The behaviour of G(x) at large x, one has to look for
the singularities of G̃(q) in Eq. 27. If G̃(q) has a singular-
ity of the form G̃(q) ∼ (q−q∗)−ν , then, upon inversion of
the L.T, it follows that G(x) ∼ xν−1eq

∗x as x→ ∞ [18].
In order to find the singularity, we plotted the denomi-
nator of Eq. 27 against its argument (Fig. 2). We find
that the function crosses zero at one point in the nega-
tive q axis. By careful numerical analysis using bisection
method, we have determined this crossing point to be at
q∗a = −λ, where the numerical constant λ ≃ 0.32 for
θ = 3

8 and λ ≃ 0.85 for θ = 1
2 . This implies that the

leading term in the decay of G(x) at large x is exponen-
tial, ie., G(x) ∼ exp(−λ

ax) as x → ∞, with a possible
power-law prefactor. Consequently, the scaling function
h(x) also has similar exponential decay at large x.

h(x) ∼ e−
λ
a x ;x≫ 1 (31)

qa

[

~

G

(

q

)

℄

�

1

302520151050-5-10

40

20

0

-20

-40

FIG. 2. The figure shows the inverse of G̃(q) plotted against
qa.

We also determine the characteristic length scales of
the distribution using the scaling form for n(k, t). These
may be defined as the ratios of moments of the distribu-
tion.

Lm(t) = Im(t)/Im−1(t) ;m = 0, 1, 2, ...... (32)

where Im(t) =
∑

k n(k, t)k
m are the moments of

n(k, t). Clearly, L1(t) = P (t)−1 ∼ tθ by definition,
whereas all higher order length scales

Lj(t) ∼ t
1
2 ; j > 1 (33)

which follows from the dynamic scaling form given by
Eq.24, 30 and 31 for n(k, t).
We now continue our study of empty interval distri-

bution for the case where θ ≥ 1
2 . Although the MMFA

allows us to study arbitrarily large values of θ, we re-
strict ourselves to the regime θ < 1, since our basic aim
is to study the persistence in q-state Potts model where
θ(q) ≤ 1. Furthermore, for q = ∞ where θ = 1, n(k, t)
can be found exactly [7] and is known to be a pure expo-
nential.
For 1

2 < θ < 1, the scaling function f(x) has a
non-integrable x−2θ singularity near x = 0 (We do not
study explicitly the logarithmic singularity occurring for
θ = 1

2 ). We integrate by parts and find

I(q, t) =
a2θ

2θ − 1
[tθ−

1
2 e−qt

−
1
2 − a1−2θe−qa −

q2θ−1γ(2− 2θ, qa)] +
1

q
e−qa ; θ ≥ 1

2
(34)

Let us now define λ = p
P (t) = qt−

1
2P (t)−1. For t→ ∞

and finite λ, we have
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I(q, t) =
a2θ

2θ − 1
tθ−

1
2 +

1

λt
1
2P (t)

(35)

After substitution in Eq.21 we find

C̃(p, t) = P (t)

[

a2θ

2θ − 1
tθ +

1

λP (t)

]

(36)

We define the constant β = tθP (t)a2θ

2θ−1 , in terms of which

C̃(p, t) = β + 1
λ . Now we substitute in Eq.20 and find

ñ(p, t) = P (t)
β

1 + β

[

λ+ β−1

λ+ (1 + β)−1

]

(37)

Upon inversion of the L.T, we find that

n(k, t) = P (t)2φ[kP (t)] (38)

where

φ(x) =
β

1 + β

[

δ(x) +
1

β(1 + β)
e−x(1+β)

−1

]

(39)

The scaling function has a rather unnatural δ-function
singularity at the origin. However, a more careful anal-
ysis show that for any finite (but still large) time t, the
divergence at origin is only power-law, but with a differ-
ent exponent than the previous case (θ < 1

2 ). We start

with the expression given by Eq.21 and Eq.34 for C̃(p, t).
After keeping the leading finite t correction, we find that

C̃(p, t) = β +
1

λ
− βt−θ(2θ−1)λ2θ−1 (40)

For purposes that will be clear later, let us define
m(k, t) = kn(k, t) so that

∑

km(k, t) = 1. We also define
the associated Laplace transform m̃(p, t). The Laplace
transforms are related through

m̃(p, t) = −∂ñ(p, t)
∂p

(41)

Using the expression Eq.20 for ñ(p, t), we find that

m̃(p, t) = − P (t)C̃′(p, t)

[1 + C̃(p, t)]2
(42)

where C̃′(p, t) = ∂C̃(p,t)
∂p , and is given by the expression

C̃′(p, t) = − 1

P (t)

[

1

λ2
+ (2θ − 1)βt−θ(2θ−1)λ2(θ−1)

]

(43)

After substitution in Eq.41 and taking the limit t →
∞, we find

m̃(p, t) =
1 + (2θ − 1)βt−θ(2θ−1)λ2θ

[1 + λ(1 + β)]2
(44)

which gives the scaling forms

m(k, t) = P (t)ψ(t, kP (t)) ; n(k, t) = P (t)2Φ(t, kP (t))

(45)

where

xΦ(t, x) = ψ(t, x) (46)

by definition. The Laplace transform of the scaling
function ψ(t, x) is

ψ̃(t, λ) =
1 + (2θ − 1)βt−θ(2θ−1)λ2θ

[1 + λ(1 + β)]2
(47)

We notice that if the finite t correction term is not in-
cluded, limλ→∞λ

2ψ̃(t, λ) is finite, and in that case, the
small argument divergence of ψ(t, x) will be sharper than
any power-law. This is what is reflected in the appear-
ance of the δ-function in Eq.41. However, when this term
is included, the multiplying factor has to be λ2−2θ in or-
der to make the resulting expression finite as λ → ∞.
This implies that the small x divergence for ψ(t, x) has
the power-law form ψ(t, x) ∼ t−θ(2θ−1)x1−2θ for small x.
From Eq. 48, we find a similar power-law divergence in
Φ(t, x) also.

Φ(t, x) ∼ t−θ(2θ−1)x−2θ ;x≪ 1 (48)

In the large x limit, Φ(t, x) becomes time independent,
and decays exponentially with x as in Eq. 39, ie.,

Φ(t, x) ≃ 1

(1 + β)2
e−

x
1+β ;x≫ 1 (49)

The characteristic length scales are easy to compute.
From the scaling form, it follows that all the characteris-
tic lengths have identical asymptotic scaling behaviour.

Lj(t) ∼ tθ ; j = 1, 2, ... (50)

The difference in the asymptotic scaling behaviour of
the characteristic length scale as θ crosses 1

2 may be seen
as a competition between two length scales, the diffusive
length scale LD(t) ∼

√
Dt which gives the mean sepa-

ration between two random walkers, and the persistence
scale Lp(t) = P (t)−1 ∼ tθ which is the mean separation
between two persistent spins. The characteristic length
scale is dominated by the larger of the two, ie., we may
write

L(t) ∼ tφ ;φ =max(12 , θ) (51)

where L(t) is defined through the dynamical scaling
form for n(k, t).

n(k, t) = L(t)−2g(t,
k

L(t) ) (52)
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The scaling function g(t, x) = h(x) when θ < 1
2 and

g(t, x) = Φ(t, x) when θ ≥ 1
2 . In general, the small argu-

ment behaviour of g(t, x) has the power-law form

g(t, x) ∼ t−ψx−τ ;x→ 0 (53)

where the exponents ψ and τ are given by

ψ = θ(2θ − 1)H(θ − 1

2
) ; τ =max[2θ, 2(1− θ)], (54)

and H(x) is the Heaviside step function. For large x,
the scaling function is time-independent and decays ex-
ponentially with x. We also note from the scaling form
that over small distances k ≪ tφ,

n(k, t) ∼ P (t)k−τ ; k ≪ tφ (55)

where τ is given by Eq.54.

IV. NUMERICAL RESULTS

We studied the quantities P2(r, t) and n(k, t) numeri-
cally by simulating the kinetics of q-state Potts model
with random initial conditions. The time evolution
of spin configurations via Glauber dynamics is imple-
mented using the mapping of this dynamics to a reaction-
diffusion problem, as mentioned in the introduction. In
this procedure, a set of diffusing particles A are ini-
tially distributed at random on the lattice with a cer-
tain average initial density n0 (which we fix as 1

2 ). When
two diffusing particles meet, they annihilate each other
or coagulate with probability 1

q−1 and q−2
q−1 respectively.

We count one MC step in the simulation after the po-
sition of every particle in the lattice has been updated
once. Persistent spins(sites) at any time t are those sites
which have not been touched by a random walker till
that time. All the simulations were done on a lattice
with 217 sites, and the results were averaged over 100
different starting configurations. In order to check the
different dynamic scaling behaviour for θ < 1

2 and θ ≥ 1
2 ,

we did our simulations for three different values of q-
2,5 and 10. For later reference, we note that from Eq.1,
the corresponding values of the persistence exponent are
θ(2) = 3/8 = 0.375, θ(5) ≈ 0.6928 and θ(10) ≈ 0.8310.
In Figs. 3-5, and later in Figs. 7-10, we have employed
logarithmic binning of the data in intervals of size 1.5n

(n = 1, 2, ....). since the statistical noise was consider-
able. However, for all exponent measurements, we have
used only the bare(not binned) data.
In Fig. 3-5, we have plotted the scaling function f(x)

for the pair correlation function P2(r, t) against the scal-
ing variable r/

√
t for three q-values, q = 2, 5 and 10. We

find excellent scaling collapse for all three values of q,
which is in agreement with the dynamic scaling picture
provided by the MMFA in Eq.15. In the figures, we find

power-law decay of f(x) for small x, with a sharp cross-
over to the flat long-distance behaviour, which is also in
agreement with the assumption we made in Eq.17. We
also note that the constant a introduced in Eq.17 is in
fact very close to 1.

slope = �0:75

t = 32� 10

3

t = 8� 10

3

t = 10

3

x = r=

p
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FIG. 3. The scaled pair correlation f(x) = P (t)−2P2(r, t)
is plotted against the dimensionless scaling variable x = r/

√
t

for q = 2 on a logarithmic scale. The straight line is a guide
to eye, and has slope 2θ(2) = 0.75 , which is the MMFA pre-
diction. The time t is measured in MC steps and distance r
is measured in units of lattice spacing.
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FIG. 4. Same as Fig.3, for q = 5. The slope of the straight
line is 2θ(5) ≃ 1.38, which is the MMFA prediction.
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slope = �1:67
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FIG. 5. Same as Fig.3, for q = 10.The slope of the straight
line is 2θ(10) ≃ 1.67, which is the MMFA prediction.

In Fig. 6, we plot the characteristic length scale L2(t)
against time t for q = 2, 5 and 10 and measure the dy-
namical exponent φ. The observed slopes of the lines
are systematically higher than the theoretical prediction
in Eq.53 by around 0.05, while the statistical error in
all the three cases was only ∼ 10−4 or smaller. The ob-
served deviation could be possibly due to the fact that the
asymptotic behaviour is not fully reflected over the time
scales which we used. The number of persistent spins left
in the system falls rapidly with time for high values of
q, and so we were forced to restrict ourselves to times
t ≤ 32000. In fact, even for q = 2 case, previous simula-
tions over longer time scales have shown the presence of
an additive power-law correction to the asymptotic scal-
ing behaviour [6].

q = 10

q = 5

q = 2

t

L

2

(

t

)
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FIG. 6. The figure shows the characteristic length scale
L2(t) (measured in units of lattice spacing, definition in text)
plotted against time t (measured as number of MC steps) on a
logarithmic scale for three Potts values q = 2, 5 and 10. The
measured slopes of the lines are respectively 0.5507, 0.7391
and 0.8672. The corresponding theoretical predictions are, to
the same accuracy, 0.5000, 0.6928 and 0.8310.
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FIG. 7. The scaled EID h(x) = tn(k, t) is plotted against
the dimensionless scaled separation x = k/

√
t for q = 2

Potts model. The excellent scaling collapse validates the
scaling form given in Eq. 24. The straight line has slope
τ = 2(1−θ(2)) = 5/4, which is the MMFA-IIA prediction.The
time t is measured in MC steps and distance k is measured in
units of lattice spacing.

In Fig. 7-9, we check the dynamic scaling form Eq.54
for n(k, t) against the scaling variable x = k/tφ for three
values of q–2,5 and 10. We find that for q = 2, excellent
scaling collapse is obtained with φ = 1

2 (Fig. 7). For
small x, we find power-law decay of the scaling function,
which crosses over to fast exponential decay at large x.
For higher values of q (where θ(q) > 1

2 ), we find that
with φ = θ, we find very good scaling collapse for x≫ 1.
But for x ≪ 1, we find systematic deviation from scal-
ing collapse, which was also observed earlier by Bray and
O’Donoghue [7]. This observation supports the theoret-
ical prediction based on MMFA, and shows that in this
regime, the scaling function has explicit time dependence.
To show this more clearly, and to verify the predicted
time-dependence, we plotted the quantity n(k, t)/P (t)
against k for three widely spaced values of t for all three
q values studied in Fig.9. We see that in all three cases,
a simple power-law decay with k is observed for k ≪ tφ,
thus validating Eq.55. The measurement of the exponent
τ gives values in reasonable agreement with theoretical
prediction, although for q = 10, the statistical error is
significant.
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FIG. 8. The scaled EID Φ(t, x) = tn(k, t) is plotted against
the scaled separation x = kP (t) on a logarithmic scale for
q = 5 Potts model. We see that the scaling function is explic-
itly time-dependent for small k, but is time-independent for
large k. The straight line in the figure gives the theoretical
prediction τ = 2θ(5) ≃ 1.38 for power-law decay at small x
(see discussion in text). The time t is measured in MC steps
and distance k is measured in units of lattice spacing.
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FIG. 9. Same as Fig. 6, for q = 10. The straight line in
the figure gives the theoretical prediction τ = 2θ(10) ≃ 1.67
for power-law decay at small x (see discussion in text). The
time t is measured in MC steps and distance k is measured in
units of lattice spacing.
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FIG. 10. In the figure, n(k, t)/P (t) is plotted against k for
two widely separated values of t for each value of q = 2, 5 and
10 (top to bottom). In all the cases, the function is indepen-
dent of t for k ≪ tφ, and shows the power law decay ∼ k−τ .
We measure τ ≃ 1.32 ± 0.03, 1.41 ± 0.04 and 1.61 ± 0.22 for
q = 2, q = 5 and q = 10 respectively. The corresponding
MMFA-IIA predictions are, to the same accuracy, 1.25, 1.38
and 1.66.

V. CONCLUSIONS

In this paper, we have studied the spatial aspects of
persistence in one dimensional q-state Potts model using
a mean field approximation. We have computed the pair
correlation function for persistent spins under this ap-
proximation, and used it to compute the empty interval
distribution under the independent interval approxima-
tion. We find dynamical scaling behaviour in both these
quantities. The time dependence of the characteristic
length scale and the behaviour of the scaling function was
found in both cases. We showed analytically within the
mean field approximation the transition from fractal to
homogeneous distribution of persistent spins as the per-
sistence exponent crosses 1

2 . We support our results by
numerical simulations in the kinetic q-state Potts model.
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