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Abstract

Screening and early identification of primary immunodeficiency disease (PID) genes is a major chal-
lenge for physicians. Many resources have catalogued molecular alterations in known PID genes along
with their associated clinical and immunological phenotypes. However, these resources do not assist in
identifying candidate PID genes. We have recently developed a platform designated Resource of Asian
PDIs, which hosts information pertaining to molecular alterations, protein–protein interaction networks,
mouse studies and microarray gene expression profiling of all known PID genes. Using this resource as a
discovery tool, we describe the development of an algorithm for prediction of candidate PID genes. Using
a support vector machine learning approach, we have predicted 1442 candidate PID genes using 69 binary
features of 148 known PID genes and 3162 non-PID genes as a training data set. The power of this
approach is illustrated by the fact that six of the predicted genes have recently been experimentally con-
firmed to be PID genes. The remaining genes in this predicted data set represent attractive candidates for
testing in patients where the etiology cannot be ascribed to any of the known PID genes.
Key words: RAPID; SVM; HPRD; Human Proteinpedia; NetPath

1. Introduction

Primary immunodeficiency diseases (PIDs) are a
genetically heterogeneous group of disorders that
affect distinct components of the innate and adaptive
immune system, such as neutrophils, macrophages,
dendritic cells, natural killer cells and T and B

lymphocytes. The study of these diseases has provided
essential insights into the functioning of our immune
system. More than 120 distinct genes have been
identified, whose abnormalities account for more
than 150 distinct forms of PID.1 PIDs are challenging
for both researchers and clinicians because they rep-
resent natural models of immunopathology, which
can usually be studied effectively only in animal
models, and manifest with a wide range of clinical
symptoms ranging from susceptibility to infections
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and allergies to autoimmune and inflammatory dis-
eases. The genetic defects that cause PIDs can affect
the expression and function of proteins involved in a
range of biological processes, such as immune devel-
opment, effector-cell functions, signaling cascades
and maintenance of immune homeostasis.2

Because genes and proteins rarely work in isolation,
genes that directly or functionally interact with known
PID genes could also represent additional PID genes.
We have recently developed a database of PID genes
designated ‘Resource of Asian PDIs (RAPID)’, which
contains information pertaining to genes and proteins
involved in PDIs along with other relevant information
about protein–protein interactions, mouse knockout
studies and microarray gene expression profiles in
various cells and organs of the immune system.
These significant features of PID genes, including
their involvement in immune signaling pathways,
were used as input binary features for the prediction
of additional candidate PID genes using a support
vector machine (SVM) learning approach.
SVM is a powerful machine learning technique

widely used in the computational biology such as
microarray data analysis,3–8 protein secondary struc-
ture prediction,9 prediction of human signal peptide
cleavage sites,10 translational initiation site recog-
nition in DNA,11 protein fold recognition,12,13 predic-
tion of protein–protein interactions,14 prediction of
protein sub-cellular localization,15–18 and peptide
identification from mass-spectrometry derived
data.19

SVM is a learning algorithm that can be used to
generate a classifier from a set of positively and nega-
tively labeled training data sets.20 SVM learns the clas-
sifier by mapping the input training samples into a
possibly high-dimensional feature space and seeking
a hyperplane in this space, which separates the two
types of examples with the largest possible margin,
i.e. distance to the nearest points. If the training set
is not linearly separable, SVM finds a hyperplane,
which optimizes a trade-off between good classifi-
cation and large margin.20

For predicting a classifier between PID and non-PID
genes, we have solved the above problem and
obtained a linear classifier (Fig. 1). To prove generaliz-
ation of the predicted classifier, we have reported
leave-one-out (LOO) error for the training data set.
In this approach, we have used all the known PID
genes that have been described in the literature as a
positive data set. The gene list for negative data sets
was selected from mouse genomic informatics
(MGI) database based on the criterion that mutations
in mice do not result in either immune or hemato-
poietic system phenotypes. We trained SVM with 69
features (Supplementary Table S1) for both PID
genes (positive data set) and genes that were not

reported to be associated with PIDs (negative data
set). The trained SVM was then used to predict candi-
date PID genes by testing all human genes (except
those used in the training data sets) as test data set.

2. Materials and methods

2.1. Initial platform

RAPIDs, which is available as a worldwide web
resource at http://rapid.rcai.riken.jp/21 was used as a
source of information about PID genes. RAPID hosts
information on sequences and expression at the
mRNA and protein levels of genes reported to be
involved in PID patients. The main objective of this
database was to provide detailed information pertain-
ing to genes and proteins involved in PIDs along with
other relevant information about protein–protein
interactions, mouse knockout studies and microarray
gene expression profiles in various organs and cells
of the immune system.

2.2. Features used for training the data sets

The PDIs are characterized by essential defects in
the functions of the immune system, leading to
increased susceptibility to infections. Although rare,
these disorders cover a wide spectrum of defects,
including antibody deficiencies, cellular immune
deficiencies, combined immune deficiencies, phago-
cytic defects, complement and other innate immunity
defects. On the basis of these observations for all the
known PID genes, we selected 69 features
(Supplementary Table S1) which not only play an
important role in the development, maintenance
and normal functioning of immune/hematopoietic
systems but also in understanding molecular

Figure 1. A schematic of SVM training strategy.
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pathophysiology of PID disease causing genes. These
features can be broadly classified as features for sig-
naling pathways from NetPath and KEGG22–24 data-
base, microarray gene expression profile from
RefDIC25 database, site of expression from HPRD26

and Human Proteinpedia,27 immune/hematopoietic
phenotypes from MGI28,29 and interaction with PID
feature from HPRD.

2.3. Data sets

To train the SVM, two types of data sets were
generated—the positive data set consists of all the
known PID genes, whereas the negative data set con-
tained genes where no immune/hematopoietic
system abnormalities were described due to mouse
knockouts, knockins or spontaneous mutations
reported for the mouse orthologs in the MGI data-
base.30 On the basis of these criteria, 148 PID genes
were in the positive data set and 3162 genes were
in the negative data set. Test data set contains
36 677 genes encoded by the human genome.
Genes involved in both the training and test data
sets were assigned a binary score of ‘1’ and ‘0,’
respectively, based on their presence or absence in a
particular feature. The trained SVM was used to

classify PID or non-PID genes from an unlabeled test
data set which consists of all human genes (Fig. 2).

2.4. SVM implementation

Weused SVMlight (http://svmlight.joachims.org/), an
implementation of Support Vector Machines in C, and
also used customized functions written in MATLAB
(http://www.mathtools.net/MATLAB/) for the calcu-
lation of confidence score for each predicted candidate
PID gene. Absolute score also known as confidence
score can be defined as AbsScoreðXÞ ¼ ðwTX � bÞ
where wTx� b ¼ 0 represents the separating hyper-
plane calculated by SVM. The score indicates how far
that particular gene from the positive side of the hyper-
plane. In other words, higher the scoremore likely that
a particular gene is a candidate PID gene. Using this
approach, 1442 candidate PID genes were predicted
which falls on the positive side of the hyperplane.

2.5. LOO error

LOO error measurement involves removing one
gene from the training set, training the SVM on the
remaining genes and then predicting the class label
of that gene that was left out. This process is repeated
until all the genes are left out exactly once. If the gene
was classified correctly, the error was reported as zero,

Figure 2. A schematic of the algorithm for prediction of candidate PID genes.
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else the error was reported as one. This process was
repeated by leaving out each gene once and the
LOO error of the data set represent the average of
individual errors.

3. Results and discussion

Over 1500 Mendelian disorders whose molecular
basis is unknown are catalogued in the online
Mendelian inheritance in man (OMIM) database.31

Most of disease-gene identification efforts involve
either linkage analysis or association studies.32,33

Recently, a number of in silico approaches to identify
candidate disease genes have been developed that
use available information reported from various
studies such as functional annotation, gene expression
profiles, annotated sequence features, protein–
protein interactions and pathway information.34–39

Several machine learning approaches have also been
employed to identify important genes for disease
classification. SVM approach is generally preferred
owing to its superior performance.40 In most
instances, SVM is a powerful tool in dealing with
high-dimensional low sample size data sets, which
also performs well in various biological analyses
including text categorization, evaluating microarray
expression data and inferring functional annotation
from protein sequence and structure data.3,4,41,42 In
this study, we trained an SVM with 69 features for
both positive (all known PID genes) and negative
(genes with no immune/hematopoietic systems
affected due to mutations from MGI) gene data sets.
As the number of genes in the positive data set is

small, the LOO error was calculated for showing gen-
eralization of the algorithm. LOO error is explained in
detail under the Materials and methods section. For
this, we used a data set containing 148 PID genes
from positive data sets along with 148 genes that
were randomly selected from the negative data set.
This process was repeated and from 60 such data
sets, the LOO error was calculated. The average LOO
error reported over 60 data sets was �8%. The LOO
error reported by leaving out only the PID (positive)
genes one by one (where training set contains same
setting of 296 data points) was �15%.

3.1. Sensitivity and specificity

The sensitivity and specificity of the data sets was
0.85 and 0.98, respectively. On the basis of these
results, we conclude that the number of genes
falsely predicted to be PID genes by the trained classi-
fier is �2%. We believe that availability of comprehen-
sive and accurate biological data is a limitation that
restricts the prediction accuracy and performance of
this algorithm. As more data accumulates about the

human genome and proteome, we expect the per-
formance of this algorithm to improve further in the
future. The complete list of predicted candidate
genes is provided in Supplementary Table S2 and
also available at the RAPID website http://rapid.rcai.
riken.jp/. All 69 features of the predicted candidate
PID genes can also be downloaded from the RAPID
website.

3.2. Evaluation studies

We were able to evaluate our predictions in a
limited fashion because a few studies have been pub-
lished describing novel PID genes that were not
included in our original list of PID genes. These exper-
imental studies have confirmed six of the genes in our
predicted list of PID genes as true PID genes. These are
myeloid differentiation factor-88 (MYD88), catalytic
subunit of DNA dependent serine/threonine protein
kinase (PRKDC), glucose-6-phosphatase, catalytic
subunit 3 (G6PC3),43–45 IL2-inducible T-cell kinase
(ITK), coronin, actin binding protein 1A (CORO1A)
and Interleukin 1 receptor antagonist (IL1RN).46–49

MyD88 is a key downstream adaptor protein in IL1
receptor complex and toll-like receptors signaling
pathways involved in inflammatory response and
host defense. In addition, MyD88 is also involved in
tumorigenesis in models of hepatocarcinoma and
familial associated polyposis; negative regulation of
TLR3 signaling and in PKC epsilon activation.50

Patients with MyD88 deficiency are reported to be
susceptible to pyogenic bacterial infections including
invasive pneumococcal disease.45 Defect in PRKDC
has been reported for the first time in a radiosensitive
T-B-SCID patient that results in inhibition of Artemis
activation and non-homologous end-joining.44 A
report of mutations in G6PC3 gene has been observed
among patients with severe congenital neutropenia
syndrome and also shown to be susceptible to
increased apoptosis that leads to disturbances in
cardiac or urogenital development.43 A novel PDI, IL-
2 inducible T-cell kinase (ITK) deficiency has been
observed due to fatal immune dysregulation followed
by EBV infection and identified homozygous mutation
in the SH2 domain of ITK gene that resulted in protein
destabilization and absence of NKT cells.47 A patient
with T cell-deficient, B cell-sufficient and NK cell-suffi-
cient severe combined immunodeficiency has been
identified with mutation in CORO1A gene along
with reduced T-cell function that was earlier demon-
strated in knock-out mice of coro1a gene with
similar phenotypes.49 Deficiency of the IL1-receptor
antagonist, an autosomal recessive autoinflammatory
disease, has been reported for the first time in chil-
dren presented with clinical phenotypes of multifocal
osteomyelitis, periostitis, pustulosis, thrombosis and

348 Prediction of Candidate PID Genes [Vol. 16,

 at U
n
iv

 o
f Io

w
a-L

aw
 L

ib
rary

 o
n
 Ju

n
e 1

7
, 2

0
1
5

h
ttp

://d
n
aresearch

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



respiratory insufficiency due to the homozygous del-
etion of the IL1RN gene.46,48 Further, functional
analysis of these mutants confirmed diminished or
lack of mRNA and protein expressions leading to cyto-
kine abnormalities.

There are two recent independent reports51,52 on
the identification and prioritization of candidate
disease genes in general as well as specific to
primary immunodeficiencies by integrating func-
tional annotations from gene ontology and compi-
lation of protein interaction network data sets from
BIND,53 BioGRID54 and HPRD.26 In the latter studies,
24 candidate genes were reported that are likely to
be involved in PID have been identified using these
parameters, out of which, over 80% of these genes
are already listed as candidates in our SVM analysis,
thereby, paving the way for successful implemen-
tation of this approach in the future.

We have also summarized reports of genome-wide
association studies and other related studies for
newly identified candidate PID genes and the associ-
ated immunological disorder (Table 1). Because the
candidate PID gene list is still large, this approach of
integrating data from high-throughput studies would
allow further prioritization of genes for confirmation
in patients with PID where the exact gene is not yet
identified. We hope that such integrated approaches
should assist PID physicians and researchers to gain
insights into the pathophysiology of these diseases
at a faster pace, which could be translated to
improve the diagnosis and/or treatment of PIDs.

3.3. Availability

The list of predicted PID genes is available as
Supplementary Table S2 and at the RAPID website
http://rapid.rcai.riken.jp/.
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