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Abstract

Rainbow connection number rc(G) of a connected graph G is the minimum number
of colours needed to colour the edges of G, so that every pair of vertices is connected
by at least one path in which no two edges are coloured the same. In this paper
we show that for every connected graph G, with minimum degree at least 2, the
rainbow connection number is upper bounded by γc(G) + 2, where γc(G) is the
connected domination number of G. Bounds of the form diameter(G) ≤ rc(G) ≤
diameter(G) + c, 1 ≤ c ≤ 4, for many special graph classes follow as easy corollaries
from this result. This includes interval graphs, AT-free graphs, circular arc graphs,
threshold graphs, and chain graphs all with minimum degree at least 2 and connected.
We also show that every bridge-less chordal graph G has rc(G) ≤ 3.radius(G). In
most of these cases, we also demonstrate the tightness of the bounds.

An extension of this idea to two-step dominating sets is used to show that for
every connected graph on n vertices with minimum degree δ, the rainbow con-
nection number is upper bounded by 3n/(δ + 1) + 3. This solves an open prob-
lem from [Schiermeyer, 2009], improving the previously best known bound of 20n/δ
[Krivelevich and Yuster, 2010]. Moreover, this bound is seen to be tight up to addi-
tive factors by a construction mentioned in [Caro et al., 2008].

Keywords: rainbow connectivity, rainbow colouring, connected dominating set, connected
two-step dominating set, radius, minimum degree.
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1 Introduction

Edge colouring of a graph is a function from its edge set to the set of natural numbers.
A path in an edge coloured graph with no two edges sharing the same colour is called
a rainbow path. An edge coloured graph is said to be rainbow connected if every pair of
vertices is connected by at least one rainbow path. Such a colouring is called a rainbow
colouring of the graph. The minimum number of colours required to rainbow colour a
connected graph is called its rainbow connection number, denoted by rc(G). For example,
the rainbow connection number of a complete graph is 1, that of a path is its length, that
of an even cycle is its diameter, that of an odd cycle is one more than its diameter, and
that of a star is its number of leaves. Note that disconnected graphs cannot be rainbow
coloured and hence the rainbow connection number for them is left undefined. For a basic
introduction to the topic, see Chapter 11 in [Chartrand and Zhang, 2008].

The concept of rainbow colouring was introduced in [Chartrand et al., 2008]. Precise
values of rainbow connection number for many special graphs like complete multi-partite
graphs, Peterson graph and wheel graphs were also determined there. It was shown in
[Chakraborty et al., 2009] that computing the rainbow connection number of an arbitrary
graph is NP-Hard. To rainbow colour a graph, it is enough to ensure that every edge of
some spanning tree in the graph gets a distinct colour. Hence order of the graph minus
one is an upper bound for rainbow connection number. There have been attempts to find
better upper bounds for the same in terms of other graph parameters like connectivity,
minimum degree etc.

In the search towards good upper bounds for rainbow connection number, an idea that
turned out to be successful more than once is a “strengthened” notion of connected k-step
dominating set (Definition 2 in Section 1.1): a strengthening so that a rainbow colouring of
the induced graph on such a set can be extended to the whole graph using a constant num-
ber of additional colours. Theorem 1.4 in [Caro et al., 2008] was proved using a strength-
ened connected 1-step dominating set and Theorem 1.1 in [Krivelevich and Yuster, 2010]
was proved using a strengthened connected 2-step dominating set. A closer examination
revealed to us that the additional requirements imposed on the connected dominating sets
in both those cases were far more restrictive than what was essential. This led us to the
investigation of what is the weakest possible strengthening of a connected dominating set
which can achieve the same. Since every edge incident on a pendant vertex will need a
different colour, it is easy to see that such a dominating set should necessarily include
all the pendant vertices in the graph. Quite surprisingly, it turns out that this obvious
necessary condition is also sufficient! (Theorem 1 in Section 2). For rainbow connection
number of many special graph classes, the above result gives tight upper bounds which
were otherwise difficult to obtain (Theorem 4 in Section 2). The farthest we could get with
the idea was a curious theorem about chordal graphs (Theorem 5 in Section 2).

A similar inquiry for the weakest strengthening a connected two-step dominating set
(Theorem 7 in Section 2) led us to the solution of an important open problem in this area
regarding the optimal upper bound of rainbow connection number in terms of minimum
degree. (See Theorem 10 in Section 2 and the remarks therein). As an intermediate step
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Table 1: Notations. G is a graph, v a vertex in G and S a subset of vertices in G. k is a
non-negative integer.

V (G) Vertex set of G.

E(G) Edge set of G.

|G| Number of vertices in G or order of G.

δ(G) Minimum degree of G

pen(G) Number of pendant vertices in G

rc(G) Rainbow connection number of G

d(u, v) Distance between vertices u and v

ecc(v) Eccentricity of v

diam(G) Diameter of G

rad(G) Radius of G

γk
c (G) Connected k-step domination number of G

γc(G) γ1
c (G), Connected domination number of G

Nk(S) Set of all vertices at distance exactly k from set S

Nk(v) Nk({v})

N(S) N1(S), Neighbourhood of S

N(v) N1({v}), Neighbourhood of v

G[S] Induced subgraph of G on S

in solving the above problem, we also discovered a tight upper bound on the size of a
minimum connected two-step dominating set of a graph in terms of its minimum degree
(Theorem 8 in Section 2). To the best of our knowledge, this bound is not yet reported in
literature. It may have applications beyond the realm of rainbow colouring. For instance,
Theorem 8 immediately gives an upper bound on radius of every graph in terms of its
minimum degree (Corollary 9 in Section 2) which marginally improves the one reported in
[Erdős et al., 1989].

1.1 Preliminaries

See Table 1 for the notations employed throughout the paper.
All graphs considered in this article are finite, simple and undirected. The length of a

path is its number of edges. An edge in a connected graph is called a bridge, if its removal
disconnects the graph. A graph with no bridges is called a bridge-less graph.
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Definition 1. Let G be a connected graph. The distance between two vertices u and v inG,
denoted by d(u, v) is the length of a shortest path between them in G. The eccentricity of a
vertex v is ecc(v) := maxx∈V (G) d(v, x). The diameter of G is diam(G) := maxx∈V (G) ecc(x).
The radius of G is rad(G) := minx∈V (G) ecc(x). Distance between a vertex v and a set
S ⊆ V (G) is d(v, S) := minx∈S d(v, x). The k-step open neighbourhood of a set S ⊆ V (G)
is Nk(S) := {x ∈ V (G)|d(x, S) = k}, k ∈ {0, 1, 2, · · · }. The degree of a vertex v is
degree(v) := |N1({v})|. The minimum degree of G is δ(G) := minx∈V (G) degree(x). A
vertex is called pendant if its degree is 1 and isolated if its degree is 0.

Definition 2. Given a graph G, a set D ⊆ V (G) is called a k-step dominating set of G,
if every vertex in G is at a distance at most k from D. Further, if D induces a connected
sub-graph of G, it is called a connected k-step dominating set of G. The cardinality of a
minimum connected k-step dominating set in G is called its connected k-step domination
number γk

c (G). When k = 1, we may omit the qualifier “1-step” in the above names and
the superscript 1 in the notation.

Note that connected k-step dominating sets exist only for connected graphs. Connected
k-step domination number is left undefined otherwise.

Definition 3. An intersection graph of a family of sets F , is a graph whose vertices can
be mapped to sets in F such that there is an edge between two vertices in the graph if and
only if the corresponding two sets in F have a non-empty intersection. An interval graph is
an intersection graph of intervals on the real line. A unit interval graph is an intersection
graph of unit length intervals on the real line. A circular arc graph is an intersection graph
of arcs on a circle.

Definition 4. An independent triple of vertices x, y, z in a graph G is an asteroidal triple
(AT), if between every pair of vertices in the triple, there is a path that does not contain
any neighbour of the third. A graph without asteroidal triples is called an AT-free graph.

Definition 5. A graph G is a threshold graph, if there exists a weight function w : V (G) →
R and a real constant t such that two vertices u, v ∈ V (G) are adjacent if and only if
w(u) + w(v) ≥ t.

Definition 6. A bipartite graph G(A,B) is called a chain graph if the vertices of A can be
ordered asA = (a1, a2, · · · , ak) such thatN(a1) ⊆ N(a2) ⊆ · · · ⊆ N(ak) [Yannakakis, 1982].

Definition 7. A graph G is called chordal, if there is no induced cycle of length greater
than 3.

2 Our Results

The main ideas in this paper are captured in Theorem 1, Theorem 7 and Theorem 8. The
other results are consequences of them. Among the results, Theorem 10 demands a special
mention due to the prominence of the question it answers in the area of rainbow colouring.
To state Theorem 1 in its full generality, we need to make one new definition.
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Definition 8 (Two-way dominating set). A dominating set D in a graph G is called a
two-way dominating set if every pendant vertex of G is included in D. In addition, if G[D]
is connected, we call D a connected two-way dominating set.

Remark 1. If δ(G) ≥ 2, then every (connected) dominating set in G is a (connected) two-
way dominating set. We use the name “two-way domination” since the definition implies
that every vertex in V (G)\D has at least two edge disjoint paths to D.

Theorem 1. If D is a connected two-way dominating set in a graph G, then

rc(G) ≤ rc(G[D]) + 3.

Proof is given in Section 3.1

Remark 2. The reader may wonder why the pendant vertices had to be included in the
dominating set D. Our strategy is to colour G[D] first and then colour all the edges
outside using a constant number (in this case 3) of additional colours ensuring rainbow
connectivity. Pendent vertices are always a bottleneck for rainbow colouring since no two
pendant edges (edges incident on pendant vertices) can share the same colour. Hence the
restriction.

Corollary 2. For every connected graph G, with δ(G) ≥ 2,

rc(G) ≤ γc(G) + 2.

Proof. This follows from Theorem 1 since (i) in this case, every connected dominating set
in G is a connected two-way dominating set and (ii) rc(G[D]) ≤ |D| − 1 = γc(G)− 1 for a
minimum connected dominating set D in G.

Corollary 3. For every connected graph G,

rc(G) ≤ γc(G) + pen(G) + 2.

Proof. This follows from Theorem 1 since adding all the pendant vertices to a minimum
connected dominating set gives a connected two-way dominating set of size at most γc(G)+
pen(G).

Diameter of a graph is a trivial lower bound for its rainbow connection number. Theo-
rem 1 gives upper bounds which are only a small additive constant above the diameter for
many special graph classes.

Theorem 4. Let G be a connected graph with δ(G) ≥ 2. Then,

(i) if G is an interval graph, diam(G) ≤ rc(G) ≤ diam(G) + 1,

(ii) if G is AT-free, diam(G) ≤ rc(G) ≤ diam(G) + 3,

(iii) if G is a threshold graph, diam(G) ≤ rc(G) ≤ 3,
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(iv) if G is a chain graph, diam(G) ≤ rc(G) ≤ 4,

(v) if G is a circular arc graph, diam(G) ≤ rc(G) ≤ diam(G) + 4.

Moreover, there exist interval graphs, threshold graphs and chain graphs with minimum
degree at least 2 and rainbow connection number equal to the corresponding upper bound
above. There exists an AT-free graph G with minimum degree at least 2 and rc(G) =
diam(G) + 2, which is 1 less than the upper bound above.

Remark 3. The upper bounds follow from Theorem 1 since (i) every interval graph G
which is not isomorphic to a complete graph has a dominating path of length at most
diam(G)−2, (ii) every AT-free graph G has a dominating path of length at most diam(G),
(iii) a maximum weight vertex in a connected threshold graph G is a dominating vertex,
(iv) every connected chain graph G has a dominating edge, and (v) every circular arc graph
G, which is not an interval graph, has a dominating cycle of diameter at most diam(G).

Tight examples and proofs for non-trivial claims made in the above remark are given
in Section 3.4. We could not find tight examples for AT-free and circular arc graphs. It
may be interesting to see whether those two upper bounds can be improved.

Another interesting application of Theorem 1 is the following result on chordal graphs.
It is curious since chordal graphs, unlike interval graphs or AT-free graphs, can grow in
more than two directions and hence they need not contain dominating paths in general.

Theorem 5. If G is a bridge-less chordal graph, then rc(G) ≤ 3.rad(G). Moreover, there
exists a bridge-less chordal graph with rc(G) = 3.rad(G).

Proof is given in Section 3.6. The main idea is that we can induct on the radius of the
graph and use Theorem 1 to prove the induction step.

Theorem 4(i) gives rc(G) ≤ diam(G) + 1 for every unit interval graph G. We have a
stronger result, using a different approach.

Theorem 6. If G is a unit interval graph such that δ(G) ≥ 2, then rc(G) = diam(G).

Proof is given in Section 3.6
The extension of the idea of two-way domination to two-way two-step domination is

what gives the remaining results. We need to make one more definition to state the next
major theorem (Theorem 7) in its full generality.

Definition 9 (Two-way two-step dominating set). A (connected) two-step dominating set
D of vertices in a graph G is called a (connected) two-way two-step dominating set if (i)
every pendant vertex of G is included in D and (ii) every vertex in N2(D) has at least two
neighbours in N1(D).

Remark 4. As in the two-way (1-step) dominating set, here too every vertex v ∈ V (G)\D
has two edge disjoint paths into D. Hence the adjective “two-way”. It may be noted
that, just like pendant edges, no two bridges in a graph can be coloured the same in any
rainbow colouring. Hence the restriction of two-way domination is in some sense necessary
to obtain colouring strategies which use only a constant number of extra colours outside
the dominating set.
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Theorem 7. If D is a connected two-way two-step dominating set in a graph G, then

rc(G) ≤ rc(G[D]) + 6.

Proof is given in Section 3.2

Theorem 8. (i) Every connected graph G of order n and minimum degree δ has a connected

two-step dominating set D of size at most 3(n−|N2(D)|)
δ+1

− 2. (ii) Every connected graph G of
order n ≥ 4 and minimum degree δ has a connected two-way two-step dominating set D′

of size at most 3n
δ+1

− 2. Moreover, for every δ ≥ 2, there exist infinitely many connected

graphs G such that γ2
c (G) ≥ 3(n−2)

δ+1
− 4.

Proof is given in Section 3.3
It is easy to see that the radius of any connected graph is at most k more than the

radius of its k-step connected dominating set. Moreover, the radius of any graph H is at
most |H|/2. Hence the following corollary is also immediate.

Corollary 9. For every connected graph G of order n and minimum degree δ,

rad(G) ≤
3n

2(δ + 1)
+ 1.

This bound marginally improves the one reported in [Erdős et al., 1989], namely 3(n−3)
2(δ+1)

+
5 and the proof is shorter. Note that we can similarly upper bound the diameter of G by
3n
δ+1

+ 1. But the corresponding bound reported in [Erdős et al., 1989] is better, namely
3n
δ+1

− 1.

Theorem 10. For every connected graph G of order n and minimum degree δ,

rc(G) ≤
3n

δ + 1
+ 3.

Moreover, for every δ ≥ 2, there exist infinitely many graphs G such that rc(G) ≥ 3(n−2)
δ+1

−1.

Proof. Observe that the connected (two-way two-step dominating) set D can be rainbow
coloured using |D| − 1 colours by ensuring that every edge of some spanning tree gets
distinct colours. So the upper bound follows immediately from Theorems 7 and 8(ii). The
family of tight examples is demonstrated in [Caro et al., 2008].

Remark 5. Theorem 10 nearly settles the investigation for an optimal upper bound of rain-
bow connection number in terms of minimum degree which was initiated in [Caro et al., 2008].
There it was shown that, if δ(G) ≥ 3, then rc(G) < 5n/6. For general δ, they had given
two upper bounds viz., (1 + oδ(1))n ln(δ)/δ and (4 ln(δ) + 3)n/δ. They had also shown a

construction for a family of graphs with diam(G) = 3(n−2)
δ+1

−1, leaving a gap of ln(δ) factor
between the bound and the construction. They remarked that the problem of finding an
optimum bound for rc(G) in terms of δ is an intriguing problem and conjectured that for
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δ(G) ≥ 3, rc(G) < 3n/4. Schiermeyer proved the above conjecture and raised the question
whether rc(G) ≤ 3n/(δ+1) for all values of δ [Schiermeyer, 2009]. If the answer is yes, then
for graphs with linear minimum degree ǫn, the rainbow connection number is bounded by
a constant. This was indeed shown to be the case in [Chakraborty et al., 2009]. But their
proof employed Szemerédi’s Regularity Lemma and hence the bound was a tower function in
1/ǫ. This was considerably improved in [Krivelevich and Yuster, 2010], where it was shown
that rc(G) ≤ 20n/δ for any connected graph. This is the best known bound for the prob-
lem till date. Theorem 10 improves it and answers the question from [Schiermeyer, 2009]
in affirmative but up to an additive constant of 3. Moreover, this bound is seen to be tight
up to additive factors by the construction mentioned in [Caro et al., 2008].

3 Proofs

3.1 Proof of Theorem 1

Statement. If D is a connected two-way dominating set in a graph G, then rc(G) ≤
rc(G[D]) + 3.

Proof. We prove the theorem by demonstrating a rainbow colouring that uses at most
rc(G[D]) + 3 colours. For x ∈ N1(D), its neighbours in D will be called foots of x, and
the corresponding edges will be called legs of x. Any rainbow path whose edge colours are
contained in {1, 2, · · · , k} will be called a k-rainbow path.

Rainbow colour G[D] using colours {1, 2, · · · , k := rc(G[D])}. Let H := G[V (G)\D].
Partition V (H) into sets X , Y and Z as follows. Z is the set of all isolated vertices of H .
In every non-singleton connected component of H , choose a spanning tree. This gives a
spanning forest on V (H)\Z with no isolated vertices. Choose X and Y as any one of the
bipartitions defined by this forest. Colour every X–D edge with k + 1, every Y –D edge
with k+2 and every edge in H with k+3. Since D is a two-way dominating set, there are
no pendant vertices outside D. Therefore, every vertex in Z will have at least two legs.
Colour one of them with k + 1 and all the others with k + 2.

We show that the above colouring is a rainbow colouring of G. For pairs in D×D, there
is already a k-rainbow path connecting them in G[D]. For a pair (x, y) ∈ N1(D)×D, join
any leg of x (coloured k+1 or k+2) with the k-rainbow path from the corresponding foot to
y in G[D]. For a pair (x, y) ∈ (X∪Z)×(Y ∪Z) join a k+1 leg of x and a k+2 leg of y with
a k-rainbow path between the corresponding foots in G[D]. For a pair in (x, x′) ∈ X ×X ,
x has a neighbour y(x) ∈ Y from the spanning forest. Join the corresponding x–y(x) edge
(coloured k + 3) with the y(x)–x′ (k + 2)-rainbow path mentioned earlier. Similarly every
pair (y, y′) ∈ Y × Y is also rainbow connected.

3.2 Proof of Theorem 7

Statement. If D is a connected two-way two-step dominating set in a graph G, then
rc(G) ≤ rc(G[D]) + 6.
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Proof. We prove the theorem by demonstrating a rainbow colouring that uses at most
rc(G[D]) + 6 colours. For x ∈ Nk(D), its neighbours in Nk−1(D), k = 1, 2 will be called
foots of x and the corresponding edges will be called legs. Any rainbow path whose edge
colours are contained in {1, 2, · · · , k} will be called a k-rainbow path.

Rainbow colour G[D] using colours {1, 2, · · · , k := rc(G[D])}. Construct a new graph
H on N1(D) with the edge set

E(H) = {{x, y}|x, y ∈ N1(D), {x, y} ∈ E(G) or

∃z ∈ N2(D) such that {x, z}, {y, z} ∈ E(G)}.

Recall that, in a two-way two-step dominating set D, there are no pendant vertices
outside D and every vertex in N2(D) has at least two neighbours in N1(D). Hence in the
above graph H , the isolated vertices are only those which have all their neighbours (at least
2) in D. Call their collection Z. Choose a spanning tree in every non-singleton connected
component of H . This gives a spanning forest of V (H)\Z with no isolated vertices. Let X
and Y be any bipartition defined by this forest. Colour every X–D edge with (k + 1) and
every Y –D edge with (k+2). For every vertex in Z, colour one of its legs with (k+1) and the
remaining with (k+2). Colour every edge of G within N1(D) by k+3. Partition the vertices
of N2(D) into A and B as follows. A = {x ∈ N2(D)|N(x) ∩ X 6= ∅ and N(x) ∩ Y 6= ∅}
and B = N2(D)\A. Colour every A–X edge with (k+3) and every A–Y edge with (k+4).
First we claim that G′ := G[D ∪N1(D) ∪ A] is rainbow connected.

By following the same arguments as in proof of Theorem 1, it can be easily seen that
every pair in D ×D, is connected by a k-rainbow path and every pair in N1(D)×D and
(X ∪ Z) × (Y ∪ Z) is connected by a (k + 2)-rainbow path. Notice that for every vertex
x ∈ X , there exists y(x) ∈ Y such that x–y(x) is an edge in the spanning forest. Vertices x
and y(x) are connected either by a single (k+3) edge or a (k+3, k+4) path. Hence between
any pair (x, x′) ∈ X × X , we can find a rainbow path by joining the x–y(x) path with
the y(x)–x′ (k + 2)-rainbow path. Similarly any pair in Y × Y is also rainbow connected.
Any pair (a, a′) ∈ A × A can be rainbow connected by joining the (k + 3) leg of a whose
foot will be in X and (k + 4) leg of a′ whose foot will be in Y with the (k + 2)-rainbow
path between the two foots. Similarly we can connect any vertex a ∈ A with any vertex
in x ∈ D ∪N1(D) by using the (k+3) leg of a if x ∈ Y and the (k+4) leg of a otherwise.
Hence G′ is rainbow coloured using colours 1 to k + 4.

Now only the vertices of B remain. All of them have at least two neighbours in G′.
Colour one edge to G′ with k + 5 and all the other edges with k + 6. It is easily seen that
we now have a rainbow colouring of entire G.

3.3 Proof of Theorem 8

Statement. (i) Every connected graph G of order n and minimum degree δ has a connected

two-step dominating set D of size at most 3(n−|N2(D)|)
δ+1

−2. (ii) Every connected graph G of
order n ≥ 4 and minimum degree δ has a connected two-way two-step dominating set D′

9



of size at most 3n
δ+1

− 2. Moreover, for every δ ≥ 2, there exist infinitely many connected

graphs G such that γ2
c (G) ≥ 3(n−2)

δ+1
− 4.

Proof. The case when δ ≤ 1 can be checked easily. So we assume δ ≥ 2 and execute the
following two stage procedure.

Stage 1. D = {u}, for some u ∈ V (G).
While N3(D) 6= ∅,
{

Pick any v ∈ N3(D). Let (v, x2, x1, x0), x0 ∈ D be a shortest v–D path.
D = D ∪ {x1, x2, v}.

}

Stage 2. D′ = D.
While ∃v ∈ N2(D′) such that |N(v) ∩N2(D′)| ≥ δ − 1,
{

D′ = D′ ∪ {x1, v} where (v, x1, x0), x0 ∈ D′ is a shortest v–D′ path.
}

Clearly D remains connected after every iteration in Stage 1. Since Stage 1 ends only
when N3(D) = ∅, the final D is a two step dominating set. Let k1 be the number of
iterations executed in Stage 1. |D ∪ N1(D)| ≥ δ + 1 when Stage 1 starts. Since a new
vertex from N3(D) is added to D, |D∪N1(D)| increases by at least δ+1 in every iteration.

Therefore, when Stage 1 ends, k1+1 ≤ |D∪N1(D)|
δ+1

= n−|N2(D)|
δ+1

. Since D starts as a singleton

set and each iteration adds 3 more vertices, |D| = 3k1 + 1 ≤ 3(n−|N2(D)|)
δ+1

− 2. This proves
Part (i) of the theorem.

D′ remains a connected two-step dominating set throughout Stage 2. Stage 2 ends only
when every vertex v ∈ N2(D′) has at most δ − 2 neighbours in N2(D′). Hence at least
two neighbours of v are in N1(D′). Moreover, since δ ≥ 2, there are no pendant vertices
in G. So the final D′ is a connected two-way two-step dominating set. Let k2 be the
number of iterations executed in Stage 2. Since we add to D′ a vertex who has at least
δ − 1 neighbours in N2(D′), |N2(D′)| reduces by at least δ in every iteration. Since we

started with |N2(D)| vertices, k2 ≤
|N2(D)|

δ
. Since we add 2 vertices to D′ in each iteration,

|D′| = |D|+ 2k2 ≤
3(n−|N2(D)|)

δ+1
− 2 + 2|N2(D)|

δ
≤ 3n

δ+1
− 2 for δ ≥ 2. This proves Part (ii).

For every δ > 2, construction for infinitely many graphs G with diam(G) = 3(n−2)
δ+1

−1 is
reported in [Erdős et al., 1989] and [Caro et al., 2008]. It is easy to see that for every graph

G, diam(G) ≤ γ2
c (G) + 3. Hence γ2

c (G) ≥ 3(n−2)
δ+1

− 4 for every graph in that family.

3.4 Proof of Theorem 4

Among the remarks made below Theorem 4, only (i), (ii) and (v) are non-trivial. Proof of
(ii) can be found in [Corneil et al., 1997]. We give proofs of (i) and (v) below.
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Statement (i). Every interval graph G which is not isomorphic to a complete graph has a
dominating path of length at most diam(G)− 2.

Proof. Consider an interval representation of G = (V,E). For u ∈ V let l(u) and r(u)
represent the left end point and the right end point of u, respectively. Let A = minu∈V r(u)
and B = maxu∈V l(u). Let a and b be vertices such that r(a) = A and l(b) = B. Let
S1 = {u ∈ V |l(u) ≤ A} and S2 = {u ∈ V |r(u) ≥ b}. Clearly S1 and S2 induce cliques in
G and thus we can assume that for each u ∈ S1, l(u) = A and for each u ∈ S2, r(u) = B.
Thus the intervals corresponding to a and b are point intervals. Since G is not a complete
graph, A 6= B. Moreover, since G is connected, there exists u ∈ S1 and v ∈ S2 such that
u, v are not point intervals. Let x ∈ S1 and y ∈ S2 be two not necessarily distinct vertices
such that the distance from x to y is minimum among all such pairs. Clearly x 6= a,
y 6= b and the shortest path P between x and y is a dominating path in G. Moreover,
since a and b are point intervals, d(a, b) ≥ d(x, y) + 2. Hence length of P is at most
d(a, b)− 2 ≤ diam(G)− 2 as required.

Statement (v). Every circular arc graphG, which is not an interval graph, has a dominating
cycle of diameter at most diam(G).

Proof. Let C denote the circle in the circular arc representation of G. We will use the same
symbol to denote a vertex of G and its corresponding arc if there is no chance of confusion.
Let Ck = (c1, c2, · · · , ck) be a minimum collection of arcs that cover C. It is easy to see
that Ck is a dominating cycle of G. We claim that diam(Ck) ≤ diam(G).

For contradiction, let us assume diam(Ck) > diam(G). Hence there exists ci, cj ∈
V (Ck), i < j, such that their distance in G is less than their distance in Ck. Let S1 and
S2 denote the two disjoint segments of C\(ci ∪ cj). Let (ci = x0, x1, · · · , xl, xl+1 = cj)
be a shortest ci–cj path in G. The set of arcs X = (x1, x2, · · · , xl) will surely cover at
least one of S1 or S2. Let R := (ci+1, ci+2, · · · cj−1) and L := Ck–(R ∪ {ci, cj}). Since arcs
corresponding to Ck cover the circle, the arcs corresponding one of them, say L will cover
the Si not covered by X . By assumption |L|, |R| > |X| = l. So we can get a smaller
collection of arcs covering C by replacing R with X in Ck contradicting the minimality of
Ck.

Tight Examples

We give examples to show that the upper bounds in (i), (iii) and (iv) of Theorem 4 are
tight. We also give an example to show that the upper bound in (ii) is nearly tight.

Example 1 (An interval graph G with δ(G) ≥ 2 and rc(G) ≥ d+ 1 for any given diameter
d). Consider the graph in Figure 1. It is an interval graph with minimum degree 2 and
diameter d. We claim that it cannot be rainbow coloured using d colours.

Let Y = {y1, y2, y3, y4} and Z = {z1, z2, z3, z4}. Every pair (y, z) ∈ Y ×Z is at a distance
d apart and they have only one d-length path between them. Hence every shortest Y –Z
path should be rainbow coloured. So in any rainbow colouring which used only d colours,
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bc bc

bc bc

x1
x2 x3 xd−3 xd−2

xd−1

y1 y2

y3 y4

z1 z2

z3 z4

Figure 1: Example of an interval graph with minimum degree 2, diameter d and rainbow
connection number d+ 1.

every Y –x1 edge is forced to share the same colour. Hence there is no rainbow path between
y1 and y3.

Example 2 (An AT-free graph G with δ(G) ≥ 2 and rc(G) = diam(G) + 2). K2,n, the
complete bipartite graph with 2 vertices in one part and n in the other, is an AT-free
graph with minimum degree 2 and diameter 2. For n ≥ 10, its rainbow connection number
is known to be 4 (Theorem 2.6 in [Chartrand et al., 2008]).

bc bc

bc bc bc bc bc bcbc bc bc

ey1 y2

x1 x2 x3 xn−3 xn−2 xn−1

Figure 2: Example of a threshold graph with minimum degree 2 and rainbow connection
number 3. Also an example of a bridge-less chordal graph with rc(G) = 3.rad(G).

Example 3 (A threshold graph G with δ(G) ≥ 2 and rc(G) ≥ 3). Consider the graph G
in Figure 2 which can be obtained by adding an edge e between the two vertices in the
smaller part of K2,n−1, n ≥ 10. It is easily seen to be a threshold graph (Two dominating
vertices, y1 and y2, can be given a weight 1, others a weight 0 and threshold being 1). For
contradiction let us assume that G can be coloured using 2 colours. Subdividing e gives a
K2,n. It is easy to see that by retaining the colour of e to one of the two new edges and
giving a third colour to the other is a rainbow colouring of K2,n. This is a contradiction
to the fact that rc(K2,n) = 4 for n ≥ 10. (Theorem 2.6 in [Chartrand et al., 2008]).

Example 4 (A chain graph G with δ(G) ≥ 2 and rc(G) ≥ 4). K2,n is a chain graph with
minimum degree 2 and diameter 2. For n ≥ 10, it is known to have a rainbow connection
number of 4 (Theorem 2.6 in [Chartrand et al., 2008]).

12



3.5 Proof of Theorem 5

Lemma 11. If v is a vertex of eccentricity r in a bridge-less chordal graph G, then
G[

⋃l

i=0N
i(v)] is a bridge-less chordal graph for all l ∈ {0, 1, · · · , r}.

Proof. It is enough to show that G′ = G[
⋃r−1

i=0 N
i(v)] is a bridge-less chordal graph. The

general result will follow by repeated application of the above. Every induced subgraph of
a chordal graph is also chordal. Hence it suffices to show that G′ is bridge-less.

For contradiction, let us assume that b = (x, y) ∈ E(G′) is a bridge of G′. Consider a
BFS tree T ′ of G′ rooted on v. Since b is a bridge, b ∈ E(T ′) (else G′\b will be connected).
Without loss of generality let x ∈ N i−1(v) and y ∈ N i(v), i ≤ r− 1. Since G is bridge-less
by assumption, there exists a path from x to y in G\b. Consider a shortest such path P .
Since P is a shortest path, P ∪ b is an induced cycle in G. Since G′\b is disconnected, P
has to contain at least one vertex z from N r(v). Further, since x ∈ N i−1(v), i− 1 ≤ r− 2
cannot be adjacent to z, P should contain at least one more vertex w from G′. Hence
P ∪{b} is an induced cycle of length at least 4 in G which contradicts the assumption that
G is chordal.

With the above lemma, now we can easily give the proof of Theorem 5

Statement. If G is a bridge-less chordal graph, then rc(G) ≤ 3.rad(G). Moreover, there
exists a bridge-less chordal graph with rc(G) = 3.rad(G).

Proof. We will prove the statement by an induction on radius. Any graph with radius
zero is a singleton vertex which can be rainbow coloured using zero colours. Hence the
statement is true for radius zero. Let the statement be true up till a radius of r − 1.

Now, let G be any bridge-less chordal graph with radius r. Let v be a central vertex
of G, i.e., a vertex with eccentricity r. By Lemma 11, G′ = G[

⋃r−1
i=0 N

i(v)] is also a
bridge-less chordal graph and its radius is at most r − 1. Hence by induction hypothesis
rc(G′) ≤ 3(r−1). Since minimum degree is at least two for any bridge-less graph, V (G′) is
a connected two-way dominating set for G. Hence by Theorem 1, rc(G) ≤ rc(G′)+3 ≤ 3r.
Thus the statement is true for all values of radius.

Consider the graph G in Figure 2. It is a bridge-less chordal graph with radius 1 and
rainbow connection number is 3. (See the argument under Example 3 in Section 3.4.)

3.6 Proof of Theorem 6

Statement. If G is a unit interval graph such that δ(G) ≥ 2, then rc(G) = diam(G).

Proof. Let G be a unit interval graph with δ(G) ≥ 2. Consider a unit interval represen-
tation of G. For u ∈ V (G), let l(u) and r(u) represent the left and right end points of u
respectively. Let x and y be the vertices corresponding to the intervals with leftmost left
end and rightmost right end respectively. Consider a shortest path P between x and y,
say P = (x = x1, x2, . . . , xk = y). Clearly k ≤ diam(G) + 1 and P is a dominating path
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in G. Let Si = {u ∈ V (G)|l(u) ≤ r(xi) ≤ r(u)}, i = 1, 2, · · · , k − 1. It is easily seen
that each Si induces a clique in G. Let H be a subgraph of G with V (H) =

⋃k−1
i=1 Si and

E(H) =
⋃k−1

i=1 E(G[Si]). Since G is a unit interval graph, H contains all edges incident on
P (including those in P ). Hence H is a spanning subgraph of G. Colour every edge in
E(G[Si])\

⋃i−1
j=1E(G[Sj ]) with colour i for i = 1, 2, · · · , k − 1. This colours every edge of

H using at most k− 1 colours. Colour the remaining edges of G using colour 1. We claim
that this is a rainbow colouring of G.

For any pair of vertices, u and v in V (G), consider any shortest path R between them
in H . Clearly R does not contain more than one edge from a single clique. In the above
colouring, two edges of H will get the same colour only if they belong to the same clique.
Hence R is a rainbow path. So rc(G) ≤ k−1 ≤ diam(G). Since diameter is a lower bound
for rainbow connection number, rc(G) = diam(G).
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