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Relative velocities in bi-disperse turbulent aerosols: simulations and theory
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We perform direct numerical simulations of a bi-disperse suspension of heavy spherical particles in
forced, homogeneous, and isotropic three-dimensional turbulence. We compute the joint distribution
of relative particle distances and longitudinal relative velocities between particles of different inertia.
For a pair of particles with small difference in their inertias we compare our results with recent
theoretical predictions [Meibohm et al. Phys. Rev. E 96 (2017) 061102] for the shape of this
distribution. We also compute the moments of relative velocities as a function of particle separation,
and compare with the theoretical predictions. We observe good agreement. For a pair of particles
that are very different from each other – one is heavy and the other one has negligible inertia – we
give a new theory to calculate their root-mean-square relative velocity. This theory also agrees well
with the results of our simulations.

I. INTRODUCTION

Here we are concerned with small but heavy particles
moving in a turbulent flow. How frequently and at what
speeds do such particles collide with each other in turbu-
lence? This question plays a central role in attempting to
understand collisions and coalescence of microscopic wa-
ter droplets in turbulent clouds [1], and to understand the
formation of planetesimals in proto-planetary disks [2–4].
The particles in these turbulent aerosols are small and
collisions between them are few and far between, conse-
quently fluctuations matter. To understand how the dis-
tribution of particle sizes changes as a function of time,
it is therefore not sufficient to merely consider the av-
erage collision rate. To account for the fluctuations it
is necessary to consider the joint distribution of particle
separations and their relative velocities [5–7]. A mean-
field like description based solely on the first moment of
relative particle velocities neglects fluctuations and may
therefore not be reliable.
Völk et al. [8–10] and others [11, 12] formulated

inertial-range theories for relative velocities of particles,
referring to particle separations in the inertial range of
turbulence. A criticism of this approach is that the col-
lisions between the particles happen deep inside the dis-
sipation range when the particle sizes are much smaller
than the Kolmogorov length, η. It has been observed in
direct numerical simulations (DNS) that inertial-range
theories for the moments of relative velocities [8–10] fail
at small Stokes numbers [13] (the Stokes number is a
dimensionless measure of the importance of particle in-
ertia). The predictions of Ref. [12] for the far tail of the
distribution of relative velocities between nearby iden-
tical particles assume large Stokes numbers and a well-
developed inertial range. This is difficult to achieve in
DNS, and therefore it remains to be determined under
which circumstances the prediction may hold.

∗ akshayphy@gmail.com
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Gustavsson et al. [6, 14–16] developed a dissipation-

range theory for the distribution of relative velocities of
identical particles, when the collision radius – the sum
of the particle radii – is in the dissipation range of tur-
bulence. An asymptotic form of the distribution was ob-
tained by matching two limiting cases and using that
inertial particles of identical sizes distribute on a fractal
attractor in phase space [6, 14]. The result is a non-
Gaussian distribution, with power-law tails that reflect
large fluctuations. The theory applies in the limit where
the Stokes number is large enough for particles to detach
from the streamlines of the flow. But since the theory
[6, 14–16] neglects inertial-range fluctuations, it may re-
quire modifications at very large Stokes numbers where
the particle separations explore the inertial range.
In the astrophysical literature, DNS results for the

relative-velocity distribution were recently reported by
Ishihara et al. [13], as well as by Pan and Padoan [17, 18].
These authors fit the distribution to stretched exponen-
tials. This raises the question how universal the power-
law tails predicted in Refs. [6, 14] are. For Stokes num-
bers of order unity, the power laws were clearly seen in
DNS [19, 20].
The findings and open questions described above ap-

ply to identical particles. But to understand how the size
distribution of particles in turbulent aerosols changes as
a result of collisions and coalescences, the distribution
for particles of different sizes (different Stokes numbers)
is needed. Meibohm et al. [21] developed a dissipation-

range theory for the distribution of relative velocities of
particles that have different Stokes numbers, by analyz-
ing a statistical model in the white-noise limit. The pre-
dictions of Ref. [21] have not been tested in DNS yet.
To understand the distribution of relative velocities in

turbulent aerosols is an important problem to study –
both in theory and in simulations – because it is hard
to obtain direct measurements of droplet velocities in
clouds, and quite impossible as far as grain velocities
in proto-planetary disks are concerned. There are two
laboratory experiments [22, 23] that have measured the
distribution of relative velocities of micron-sized parti-
cles in turbulence, and their mean and root-mean square
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values as functions of particle separations. Experimental
limitations make it difficult to measure at which relative
velocities particles actually collide in these experiments.
For micron-sized particles this occurs at separations deep
inside the dissipative range, at present outside the spatial
resolution of the experiments.

It is therefore important to validate existing theories
for collision velocities of particles in turbulence by com-
parison with results of DNS. This is the purpose of the
present paper. It is organized as follows: in Section II we
describe the model and details of the DNS. In Section III
we summarize the key theoretical results of Refs. [14, 21].
In Section IV we present our DNS results for the relative
velocities between particles with different Stokes num-
bers. We compare the DNS results for the joint probabil-
ity distribution of relative velocities and separations with
the theoretical predictions of Meibohm et al. [21]. The
distribution is non-Gaussian. When the difference be-
tween the Stokes numbers is not too large, then the distri-
bution exhibits power-law tails as predicted by theory. At
small separations and relative velocities, the power law
in relative velocities is cut off, it becomes a broad Gaus-
sian (approximately uniform), verifying the new velocity
scale Vc predicted by theory [21]. Also the distribution
of separations becomes uniform for separations smaller
than Rc. This scale was predicted in Refs. [24, 25]. We
show how the scales Vc and Rc are related. Finally, we
develop a new theory for the root-mean-square (RMS)
relative velocities of particles when one of the particles
has very small Stokes number. We find that the results
from this theory are in accord with our simulations. We
conclude in Section VI.

II. NUMERICAL METHOD

A. Particle dynamics

We describe the motion of a heavy particle in a turbu-
lent flow by the Stokes model [26]:

d
dtx = v , d

dtv =
1

τ
[u(x, t)− v] . (1)

Here x and v are the position and velocity of the parti-
cle, the characteristic response time of the particle is τ .
The response time depends upon the particle size, a. In
the Stokes limit, τ = (2ρp/9ρ) a

2/ν. Here ρp and ρ are
the mass densities of the particle and the fluid, and ν is
the kinematic viscosity. Finally u(x, t) is the flow veloc-
ity. This model assumes that the effect of gravitational
acceleration is small compared to the acceleration due
to the turbulent flow, fluid-inertia corrections are small,
and both particle-particle interactions and Brownian dif-
fusion of individual particles are ignored.

B. Direct numerical simulation of turbulence

The flow velocity u(x, t) is determined by solving the
Navier–Stokes equation

∂
∂tρ+∇ · (ρu) = 0 , (2a)

ρ D
Dtu = −∇p+ µ∇ · S+ f . (2b)

Here D
Dt ≡ ∂t + u · ∇ is the Lagrangian derivative,

p is the pressure of the fluid, and ρ is its density as
mentioned above. The dynamic viscosity is denoted by
µ ≡ ρν, and S is the second-rank tensor with components
Skj ≡ ∂kuj + ∂juk − δjk(2/3)∂lul (Einstein summation
convention). Here ∂kuj are the elements of the matrix A

of fluid-velocity gradients. We use the ideal gas equation
of state with a constant speed of sound.
Our simulations are performed in a three-dimensional

periodic box with sides Lx = Ly = Lz = 2π in code units.
To solve Eqs. (2) we use the pencil code [27], which uses a
sixth-order finite-difference scheme for space derivatives
and a third-order Williamson-Runge-Kutta [28] scheme
for time derivatives. The external force f , which is a
white-in-time, Gaussian, stochastic process concentrated
on a shell of wavenumber with radius kf in Fourier
space [29], is integrated by using the Euler–Marayuma
scheme [30]. Under the action of the force the flow at-
tains a statistically stationary state where the average
energy dissipation by viscous forces is balanced by the
average energy injection by the external force, f . The
amplitude of the external force is chosen such that the
Mach number, Ma ≡ urms/cs is always less than 0.1, i.e.,
the flow is weakly compressible which has no important
effect on our results; please see the discussion in Ref. [20],
section II and Appendix A in Ref [20] for further details.
The same setup has been used before in studies of scal-
ing and intermittency in fluid and magnetohydrodynamic
turbulence [31–33].
We introduce the particles into the simulation after the

flow has reached a statistically stationary state. Initially,
the positions of the heavy particles are random and sta-
tistically homogeneous with zero initial velocity. Then
we simultaneously solve Eqs. (1) and (2). To this end
we must interpolate the flow velocity to typically off-grid
positions of the heavy inertial particles. We use a tri-
linear method for interpolation.
We define the Reynolds number by Re ≡ urms/(νkf),

where urms is the root-mean-square velocity of the flow
averaged over the whole domain and the kinematic vis-
cosity ν The mean energy dissipation rate ε ≡ 2νΩ where
the enstrophy Ω ≡

〈

ω2
〉

, and ω ≡ ∇ × u is the vortic-

ity. The Kolmogorov length is defined as η ≡ (ν3/ε)1/4,
the characteristic time scale of dissipation is given by
τη = (ν/ε)1/2 and uη ≡ η/τη is the characteristic ve-
locity scale at the dissipation length scale. In what
follows, unless otherwise stated, we use η, τη, and uη

to non-dimensionalize length, time, and velocity respec-
tively. The large eddy turnover-time is given by Teddy ≡
1/(kfurms). We define the Stokes number as St ≡ τ/τη,
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TABLE I. Parameters for our DNS runs with N3 collocation
points: ν is the kinematic viscosity, Np is the number of parti-
cles, Re ≡ urms/(νkf) is based on the forcing wavenumber kf ,

ε is the mean rate of energy dissipation, η ≡ (ν3/ǫ)1/4, and

τη ≡ (ν/ǫ)1/4 are the Kolmogorov length and time scales re-
spectively, and Teddy ≡ 1/(urmskf) is the large-eddy-turnover
time. The Mach number Ma = urms/cs ≈ 0.1. In the table
we quoted dimensionless numbers.

N Np Re 1/(kfη) Teddy/τη

512 107 89 14.28 2.21

where τ is the particle response time in Eq. (1). As men-
tioned in the Introduction, this parameter measures the
importance of particle inertia.
It is important to note that the particles in our simu-

lations are actually point particles. As particle-particle
interactions are ignored there are no real collisions. As
far as the numerical code is concerned, the particles are
characterized by the time-scale τ which determines the
Stokes number. To estimate the radius of a particle
from its Stokes number we have used typical values of
the ratio of the density of the particle to the density of
the background fluid that corresponds to water droplets
in clouds [34]. To obtain collision velocities that cor-
responds to dust in proto-planetary disks one must use
different value of the density ratio. Also, since the sizes
of the dust grains are smaller than the mean-free-path of
the gas [2, 3, 35], we must use a different expression for
the particle response time. It is obtained by replacing
the mean free path ℓ in ν = ℓcs (where cs is the sound
speed) by the particle size a. This yields τ ∼ a instead
of the quadratic dependence τ ∼ a2 in Stokes law.

III. THEORETICAL BACKGROUND

In this Section we summarize the dissipation-range the-
ory for the distribution of relative velocities between two
particles with different Stokes numbers [21]. We denote
the relative-particle velocity by V = v2 − v1, where v1

and v2 are the individual particle velocities. The dis-
tance between the particles is denoted by R = |R|, where
R = x2−x1 is the separation vector between the particle
positions, and the longitudinal relative velocity is defined
as VR = V ·R/R. We denote the steady-state distribu-

tion of relative velocities and separations by P(R, VR).
The moments of the distribution are characterized by

〈|VR|
p〉≡

mp(R)

m0(R)
,mp(R)=

∫

dVR |VR|
p
P(R, VR) . (3)

The factor m0(R) is related to the pair correlation func-
tion by m0(R) ∝ g(R)Rd−1 [6].

A. Distribution of relative velocities and

separations

Gustavsson and Mehlig [6, 14, 15] developed a theory
for the distribution of relative velocities of nearby iden-

tical particles. The theory takes into account particle in-
ertia, and it rests on the observation that such particles
form fractal spatial patterns in turbulence [26], and that
caustics can give rise to large relative velocities at small
separations [36–38]. The theory predicts that the distri-
bution of relative velocities VR at small separations R is
a power law, reflecting fractal clustering in phase space.
The power-law exponent is related to the phase-space
correlation dimension D2 [6, 14, 21]. The distribution
determines the scaling of relative-velocity moments (3)
with separation R [15]. These predictions for identical

particles should hold for turbulence as well as statistical-
model flows. In the white-noise limit, the theory was
derived from first principles in Refs. [6, 14]. For turbu-
lent flows, the theoretical predictions were verified using
DNS [19, 20, 39] and using kinematic turbulence simula-
tions [15]. See also Refs. [40–43].
The correlation dimension D2 is not universal. In

the white-noise limit D2 can be calculated in pertur-
bation theory [14, 26], but in general it must be de-
termined numerically. As is well known, D2 depends
non-monotonically on St with a minimum at St of or-
der unity [44].
Particles with different Stokes numbers cluster on dis-

tinct fractal attractors, so that the distribution of sepa-
rations between particles with different Stokes numbers
is cut off at a small spatial scale, Rc that depends on
the difference between the Stokes numbers [24, 25]. How
are the relative velocities of nearby particles affected? In
Ref. [21] a statistical model for relative velocities between
particles with different Stokes numbers was analyzed in
the white-noise limit. It was shown that there is a new
velocity scale Vc, and that the distribution of VR and R is
a broad Gaussian below these scales [21], in other words
approximately uniform:

P(R, VR) = N Rd−1



















1 for |VR| < Vc and R < Vc/z
∗ ,

Rµc−d−1 for R > Vc/z
∗ and |VR| < z∗R ,

(

|VR|/z
∗
)µc−d−1

for |VR| > Vc and z∗R < |VR| ,

0 for |VR| > V0 .

(4)

In addition to the normalization N there are four more parameters in Eq. (4): the two velocity scales Vc and V0,
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the power-law exponent µc, and the parameter z∗.
The last parameter, z∗, defines the line |VR| = z∗R

in the R-VR plane where known limiting behaviors of
P(R, VR) in the dissipative range are matched to obtain
the theoretical predictions for P(R, VR).
The exponent µc is related to the phase-space correla-

tion dimension D2(St ) of the mono-disperse system with
Stokes number St

µc = min{D2(St ), d+ 1} , (5)

where d = 3 is the spatial dimension, and St is the har-
monic mean of the two Stokes numbers,

St =
2St1St2
St1 + St2

. (6)

The parameter D2 can be calculated analytically in the
white-noise limit [21, 45, 46], but in turbulent flows it
must be determined numerically.
Now consider the upper velocity scale V0. It was as-

sumed in deriving Eq. (4) that it suffices to consider sepa-
rations in the dissipative range where the turbulent fluid
velocities are spatially smooth. This range extends up
to separations R somewhat larger than the Kolmogorov
length η. The theory mirrors the distribution of spatial
separations for R < 1 to distributions in relative veloci-
ties, just as it does for identical particles. Therefore the
upper cutoff for the VR power laws is

V0 = z∗ . (7)

How this parameter depends upon the Stokes number is
not known in general. In a one-dimensional statistical
model this parameter was calculated in the white-noise
limit in Ref. [6].
In Eq. (7), the distribution was simply set to zero for

VR > V0. This is an oversimplification, in particular
for turbulence where the far tails of the VR-distribution
at small spatial separations result from particle pairs
that have had separations in the inertial range in the
past. For large Stokes numbers and when the inertial
range is well developed it was argued in Ref. [12] that
the tail of the conditional distribution P(R=0, VR) has
the form ∼ C1/(ετ)

1/2 exp[−C2|VR|
4/3/(ετ)2/3] for very

large Stokes numbers. A statistical-model calculation
with an inertial range yields the prefactors C1 and C2

in the white-noise limit, but they could have different
parameter dependencies in turbulence [47]. At smaller
Re, when the inertial range is not well developed, one
may argue that the tail should be well approximated by
a Gaussian with variance ∝ u2

rms. The RMS turbulent
velocity is an estimate of the relative velocities of parti-
cles that move independently at large separations, of the
order of the system size. In summary, the far tail of the
relative-velocity distribution is not universal. Here we
simply set

V0 = urms (8)

when we compare with our DNS data.

The fourth parameter in Eq. (4) is the scale Vc. It
depends upon the difference of the two Stokes numbers.
We follow Ref. [21] and write

θ =
|St1 − St2|

St1 + St2
. (9)

The white-noise model predicts that [21]

Vc∝θ (10)

at small θ. In this case, the power-law tails of the dis-
tribution (4) are expected to contribute to the relative
velocity moments. According Eq. (4), the tails of the
distribution beyond Vc are simply those of the mono-
disperse system.
Eq. (4) implies that the distribution of separations

becomes uniform in R for R < Rc, as predicted in
Refs. [24, 25]. Their spatial scale Rc is thus related to
our velocity scale as follows:

Rc ≡ Vc/z
∗ , (11)

and therefore Rc ∝ θ at small θ.

B. Moments of relative velocities

Theoretical predictions for 〈|VR|
p〉 are obtained by in-

tegrating the distribution P, as determined by Eq. (3).
We first quote the results when θ is small, when the dis-
tribution exhibits a clear power law. This power law
is cut off at small relative velocities at max(Vc, z

∗R) =
z∗max(Rc, R), consequently the result for 〈|VR|

p〉 de-
pends on whether R > Rc or not. When R > Rc we
find

mp(R) = bpR
µc+p−1 + cpR

d−1 , (12)

with

bp = −
N (1+d− µc)z

∗p+1

(p+1)(µc−d+p)
, (13)

cp =
N z∗p+1(V0

z∗
)
µc−d+p

µc − d+ p
,

where N is the normalization factor in Eq. (4). For large
values of p, the coefficients bp and cp are sensitive to the
form of the distribution beyond the cutoff z∗, which de-
pends on the nature of the turbulent fluctuations. Also,
the value of µc = D2(St ) is not universal, and neither
is the parameter z∗. The second term in Eq. (12) ap-
pears due to presence of singularities (of the gradient of
particle velocity) called caustics [37, 38] for non-zero val-
ues of St. In other words, the presence of caustics imply
that while the distance between two nearby particles goes
to zero their relative velocities can remain order unity.
Whereas, in the absence of caustics, the particle velocity
field remains smooth – relative velocity of two particles
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goes to zero as separation between them goes to zero,
this gives rise to first term in Eq. (12) (see Ref. [6] for
more discussion).
The R-dependence predicted by Eq. (12) is universal.

It is equal to the scaling form of mp(R) for identical par-
ticles [15], as expected for small θ. But for particles with
different Stokes numbers the coefficients bp and cp depend
upon θ, although only through the global normalization
constant N . The scale Vc does not enter explicitly be-
cause R > Rc.
Now consider R < Rc. Then the uniform part in

Eq. (4) dominates the moments. At R < Rc, particles
of two different sizes a1 and a2 move approximately in-
dependently from each other. In this case the moments
take the form:

mp(R) ∼ c′pR
d−1 , (14)

with

c′p = cp −
N (1 + d− µc)(Vc/z

∗)µc−d+pz∗p+1

(µc − d+ p)(p+ 1)
. (15)

For p = 1, 2, 3, . . . one finds that c′p < cp for heavy parti-
cles in incompressible turbulence at not too large Stokes
numbers [DNS show that D2 > d−1, and that D2 < d+1
for not too large Stokes numbers, see Eq. (5)]. The mo-
ments for larger θ are nevertheless usually larger than
those for θ → 0, because the term bpR

D2+p−1 makes a
large negative contribution unless R is extremely small,
and this term is absent in Eq. (14). In general, if St is
small enough so that caustics are rare, then Eq. (14) can
give a contribution for different particles that is much
larger than for identical particles, leading to a signifi-
cantly higher collision rate. The dependence on R is of
the same form as the caustic contribution in Eq. (3) in
the limit θ → 0.
Finally consider larger values of θ, large enough so that

the power laws in Eq. (4) disappear. In a Gaussian white-
noise model the distribution P(R, VR) is Gaussian in this
limit [21].

1. Very dissimilar pair of particles

When one of the particles has a very small Stokes num-
ber, St2 ≪ 1 say, we can evaluate the coefficient c′p term
in Eq. (14) in terms of single-particle observables. We
now outline the calculation for p = 2. When St2 ≪ 1, we
can expand the equation of motion up to leading order
in St2 to obtain the velocity of the second particle:

v2 ≈ u(x, t)− A ·R− St2
Du

Dt
(x+R, t) . (16)

The relative velocity between two particles can then be
written as

V (R) ≈ v − u(x, t)

+A ·R+ St2
Du

Dt
(x+R, t). (17)

The first line of the right-hand-side of Eq. (17) is St1
times the acceleration of a single particle; at small |R|
and St2 this is the leading order contribution to the rel-
ative velocity. The distribution of the acceleration has
been studied extensively and is known to have exponen-
tial tails [48, 49]. This information allows us to approx-
imately relate the structure functions to single-particle
averages, as shown below.
We assume that to calculate 〈V 2

R〉 for R much smaller
than Rc it is sufficient to consider one component of V .
Consider one component of Eq. (17), square both sides
of the resultant equation and then take steady-state av-
erages. Assuming that R ≪ 1 we obtain:

〈

V 2
R

〉

≈
1

3

[〈

u2
〉

−
〈

v2
〉]

(

1− 2
St2
St1

)

−
2

3
St2〈(u − v) · A · (u− v)〉 . (18)

All averages on the r.h.s. of Eq. (18) are evaluated for
a single particle with Stokes number St1. The only St2-
dependence appears in the prefactors on the r.h.s. of
Eq. (18). We note that there is no R-dependence (since
all averages are single-particle averages). This is the re-
sult of neglecting the gradient term A ·R in the equation
for the particle separations. As explained in Section II.A
of Ref. [21] this is allowed provided that R < Rc. But
note that in Ref. [21] the white-noise model was analyzed,
while Eq. (18) applies to a turbulent flow.

IV. DNS RESULTS

A. Distribution of relative velocities and

separations

Fig. 1 shows a comparison between the theory Eq. (4)
and our DNS results for P(R, VR)/R

2 for different values
of θ. The first column of panels in this Figure shows con-
tour plots of P(R, VR)/R

2. As predicted by the theory
(4), there is a region in the R-VR plane where the distri-
bution is a broad Gaussian. In a log-log plot this appears
as an approximately uniform region where P/R2 is ap-
proximately constant. Outside this region, and for small
values of θ, the equidistant contour lines show that the
distribution exhibits the power laws, as predicted by the
theory.
To analyze the power laws in relative velocities in more

detail, the second column of panels in Fig. 1 shows plots
of P(R, VR)/R

2 as functions of |VR| for several different
values of R. We can clearly distinguish the power-law
from the broad Gaussian at small |VR|, where P/R2 ≈
const. Eq. (4) says that the cross over between these two
behaviors occurs at min(Vc, z

∗R). We estimate this cross-
over velocity scale by drawing two lines: a horizontal one
at small |VR|, and a power-law fit for larger |VR|. The
scale at which these two lines intersect is our estimate
of the cross-over scale. For small values of R the fits
yield a velocity scale that is independent of R, this is
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FIG. 1. (color online) DNS results for joint distribution P(R, |VR|) of R and |VR|, divided by R2. Parameters: St = 2 and
θ = 0.005 (top row), θ = 0.05 (second row), and θ = 0.1 (bottom row). First column: Contour plots of P(R, |VR|)/R

2 color
coded according to log10[P(R, |VR|)/R

2]. The blue lines in the bottom left corner of these plots show the scales Rc and Vc (see
text). The dashed lines show the theoretical matching condition |VR| = z∗R (see text). Second column: plots of P(R, |VR|)/R

2

as functions of |VR| for different values of R as indicated in the panels. Also shown are fits (solid lines) to the theoretical power-
law prediction |VR|

µc−4, Eq. (4), to determine µc as a function of St . The crossover between the approximately uniform (broad
Gaussian) part at small |VR| (and small R = 0.03, 0.06, horizontal solid lines) and the power-law at intermediate R sets the
scale Vc (dashed vertical lines).
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Vc. For slightly larger values of R, the velocity scale
is proportional to R, as predicted by theory, and the
constant of proportionality defines the parameter z∗.
Dissipation-range theory [21] says that Vc = c θ for

small θ, but the theory does not determine the constant of
proportionality c. This constant is system specific, as is
the value of z∗. In the white-noise limit these parameters
can be calculated analytically [6, 21], but not in general.
Therefore it is important to determine these constants

by DNS. The results are shown in Fig. 2. Panel (a) shows
that z∗ is essentially independent of θ, while panel (b)
demonstrates that Vc is proportional to θ at small θ, as
predicted by the theory. Fig. 2(b) also shows that the
prefactor depends on St as St 1/2, at least for the pa-
rameters simulated. This follows from the fact that the
DNS data for Vc St

−1/2 collapse onto a single line. How-
ever, there is no theoretical explanation for this result,
as far as we know.
Fig. 2(c) shows the power-law exponents µc. We ex-

tracted µc for different values of St and for two different
values of θ by fitting power laws to the DNS results for
the distribution of relative velocities. Panel (c) shows
the resulting exponents µc together with D2 for the case
St1 = St2 from Ref. [20]. Up to the numerical accuracy
in our DNS we find for D2 < 4 that µc = D2, indepen-
dent of θ for small values of θ. The phase-space correla-
tion dimension D2 has a characteristic minimum at St
of order unity and monotonously approaches the spatial
dimension d for small St and the dimensionality of phase
space, 2d, for large St [see Fig. 2(c)].
In summary we observe good agreement between our

DNS and the theory, Eq. (4), in particular for small θ. As
θ increases, the velocity scale Vc grows so that the range
of the power law between Vc and V0 becomes smaller. For
large enough values of θ, the power laws disappear. In
this limit the distribution is a broad Gaussian, approxi-
mately uniform. In our log-log plots, P/R2 is approxi-
mately constant in this region.

B. Moments of relative velocities

Fig. 3 summarizes our DNS results for the moments
of relative velocities as a function of particle separation.
Panel (a) shows DNS results for m0(R)/R2 as a function
of R (symbols), while panel (b) shows m2(R)/R2, also
as a function of R. The parameters are given in the
Figure caption. Also shown is the scaling of the smooth
contribution predicted by Eq. (12) (solid line). Dashed
vertical lines correspond to the scale Rc = Vc/z

∗. The
parameters Vc, µc, and z∗ were determined separately, as
described in Section IVA.
As predicted by Eq. (12), the moments scales as Rd−1

for R < Rc. For R > Rc smooth contribution dominates
for m0(R) for both values of St , whereas for higher or-
der moment m2(R) smooth contribution dominates only
for the smaller mean Stokes number. For larger mean
Stokes number, the caustic contribution cpR

d−1 swamps

the smooth part for R below Rc. In limit the relative-
velocity moments mp(R) are dominated by the singular
Rd−1-contribution provided that p is large enough. While
the R-dependence of this contribution is the same for
identical particles and for particles with different Stokes
numbers, the physical origin of this power law is slightly
different in the two cases. For identical particles, the sin-
gular term is caused by caustics [36–38]. For particles
with different Stokes numbers, by contrast, the singular
contribution is due to the uncorrelated motion between
nearby (R < Rc) particles with different Stokes numbers
[21].

1. Very dissimilar pair of particles

Fig. 3(c) shows DNS results for 〈V 2
R〉 at the collision

radius R = a1 + a2 for St2 ≪ 1 as a function of St1
(red circles), that is for large values of θ. Also shown
is the theoretical expression, Eq. (18) (green squares).
The averages on the r.h.s. of Eq. (18) are determined
by DNS, by averaging along heavy-particle paths in the
steady state. The agreement is good at small values of
St1, but we observe deviations at larger values of the
Stokes number. It is possible that this is due to higher-
St2-terms neglected in (18). Plotting only the first term
of Eq. (18) yields slightly different results, although the
deviations are smaller than those between the full theory
and the DNS results.
We have checked that the gradient term A · R in the

equation of motion for the separationR is negligible. For
all data points shown, θ is large enough so that a1 + a2
is much less than Rc. In this range the DNS results do
not depend upon R. This is the plateau region seen in
Fig. 3(a).

V. DISCUSSION

Our results show in agreement with the theory that the
distribution of relative velocities is non-Gaussian when θ
is small. For a fairly wide range of θ (up to θ ∼ 0.1),
the distribution has power-law tails ∼ |VR|

µc−4 at small
separations. The dissipation-range theory predicts that
the exponent µc is determined by the phase-space cor-
relation dimension D2(St ) for a mono-disperse system
with Stokes number St [Eq. (5)]. In our simulations, the
numerical values of µc vary from approximately 2.4 to
3.5, and in this range there is good agreement between
the theory and the numerical values of µc obtained from
the DNS [50].
In the astrophysical literature, several papers have re-

ported DNS results for the distribution of relative parti-
cle velocities [13, 17, 18]. These authors attempted to fit
the distributions to stretched exponentials, of the form
exp[−(|VR|/β)

γ ] with fitting parameters β and γ. The
parameter γ is usually quoted to be smaller than unity.
This law is neither consistent with our power-law predic-
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FIG. 2. (color online) Estimates of the parameters z∗, Vc, and µc, obtained from the DNS results for P(R, VR) shown in
Fig. 1. (a) Scale z∗ as a function of St , for two different values of θ (symbols). The solid black line is the estimate for identical
particles, taken from the DNS of Ref. [20]. (b) Scale Vc as a function of θ (symbols), for different values of St . The solid black
line shows a linear dependence upon θ with fitted prefactor 1.3. (c) Exponent µc as a function of St for two different values
of θ obtained by power-law fits to DNS results for P(R,VR) at fixed R, see Fig. 1. The solid black line is the phase-space
correlation dimension D2 of the fractal attractor for identical particles with Stokes number St , taken from Ref. [20].
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FIG. 3. (color online) DNS results for moments of relative velocities as a function of particle separation R. (a) Zero-th moment
m0(R) and (b) second moment divided by R2, for St = 0.2 and 2, and θ = 0.01 (symbols). Solid line shows the scaling of
smooth contribution in Eq. (12). The scale Rc = Vc/z
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velocity 〈V 2
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1/2 for R = a1 + a2 plotted as a function of St1 for St2 = 0.1 (red circles). The first term of theoretical estimate,
Eq. (18), is plotted as blue ⋆ (joined with a blue solid line). The full expression Eq. (18), is plotted with green � (joined by a
green solid line).

tions, nor with the large-St prediction from Ref. [12]. We
have reanalyzed the data in Fig. 12 of Ref. [13] for the
two smallest Stokes numbers, and find clear power laws
over one decade of VR/uη, with exponents µc− 4 in good
agreement with the dissipation-range theory (the values
of µc were obtained from the plots of the pair correlation
function in Fig. 8 of the same paper).

We remark that the distribution of relative velocities in
bidisperse suspensions was recently studied in Ref. [51].
This study did not report power-laws for the distribution
of relative velocities. As our results show, possible rea-
sons for the absence of power laws are, firstly, that the
distributions were calculated at quite large separations
(of the order of the Kolmogorov length, R ∼ η). Sec-
ondly, the values of θ were quite large, too large to see
power laws as our theory and DNS data demonstrate.

Pan and Padoan [17] did not plot the radial relative ve-
locity VR (that determines how particles approach each
other), but instead the RMS relative velocity Vrms ≡

√

V 2
1 + V 2

2 + V 2
3 . The power law of the distribution of

Vrms has a different exponent [6, 14]: |Vrms|
µc−2d. We

have compared this prediction with the data shown in
Fig. 14 of Ref. [17]. There is a clear power law, with
exponent ≈ −3.7 for St = 1.55. Theory says that the
exponent should equal D2−6, but Ref. [17] does not give
values for the fractal correlation dimension D2. Estimat-
ing D2 from our data at St = 1.55 (albeit at a different
Reynolds number), we find D2 − 6 ≈ −3.4, in reason-
able but not perfect agreement with the DNS results of
Ref. [17].

Ishihara et al. state that their distribution approaches
a Gaussian when θ is not small. This is consistent with
theory [21], predicting a broad Gaussian for the body of
the distribution. In our log-log plots, Fig. (1), the broad
Gaussian appears as a region where P/R2 is approxi-
mately constant. When θ is large enough, this region
extends out to V0, approximately equal to the RMS tur-
bulent velocity, urms. The form of the far tails beyond



9

V0 is difficult to determine, because the tails describe
rare events, and since there is no theoretical prediction
apart from the law predicted in Ref. [12]. Yet this ap-
plies only at large Stokes numbers, and when there is a
well-developed inertial range.

In both cases, when θ is small and when it is large, the
RMS relative velocity is determined by the upper cutoff,
V0. We have simply set V0 = urms here, but this is a
simplification. In general, the upper cutoff V0 must also
depend on particle inertia (Stokes number). We have
neglected this dependence here. Taking V0 = urms im-
plies that the moments of particle relative velocities de-
pend on the Reynolds number Re when determined by

the upper cutoff V0, since urms/uη ∝ Re1/4 [52]. With
our present computational capabilities we cannot explore
such a weak dependence on Re; hence we have concen-
trated our efforts on a single value of Re. Experimental
data [23] confirms that the Re-dependence is quite weak.

Ishihara et al. [13], on the other hand, computed RMS
relative particle velocities for different values of Re (Fig. 3
in their paper), obtaining a fairly strong dependence on
Re. A possible explanation of this result is that Ishihara
et al. evaluated 〈V 2

R〉 at fixed separation r = 10−3L.
Changing Re while keeping the system size L the same
changes the Kolmogorov length η and hence R = r/η
is different for different value of Re. Unless R < Rc

(whether this condition is satisfied or not is determined
by the values of the Stokes numbers), the relative velocity
statistics depends on R, as the dissipation-range theory
shows. Thus evaluating the moments at r = 10−3L for
changing η may give rise to a spurious Re dependence.
It would be of interest to test quantitatively whether the
Re-dependence predicted by the dissipation-range theory
is consistent with this explanation.

It is a strength of the dissipation-range theory sum-
marized in Section III that it predicts how the moments
of relative velocities depend upon particle separation R.
The microscopic dust grains in accretion disks are much
smaller than the Kolmogorov length η, so that the colli-
sion radius R = a1 + a2 is well below η. Inertial-range
theories [8–12] do not refer to scales below η. As a con-
sequence they cannot describe collisions that occur deep
in the dissipation range. In DNS it is also difficult to
reach to such small scales, much smaller than η, simply
because particles rarely come so close. But collisional ag-
gregation in turbulent aerosols is fluctuation dominated
when the systems are dilute, so that such rare events
matter. Several recent works [13, 17, 53] give results for
RMS relative velocities at fixed separations, usually of
order η, irrespective of the size of the particles. The
theory (12-15) allows to extrapolate the DNS results to
R = a1 + a2. Here the parameter Rc = Vc/z

∗ plays an
important role. If R < Rc then the theory shows that
the relative particle-velocity statistics is independent of
the separation R.

A weakness of the dissipation-range theory is that it
expresses the prefactors bp and cp in the R-dependence
of the moments in terms of parameters z∗, µc, Vc, and V0

that must be determined separately, by DNS for exam-
ple. The theory shows, moreover, that the prefactors are
not universal. It would therefore be of great interest to
find alternative ways of computing these prefactors. One
possibility, although numerical, is to use the approach
of Zaichik and collaborators [54, 55] and its refinements
[56].

VI. SUMMARY AND CONCLUSIONS

Let us summarize the key findings here. We used
direct numerical simulations of particle-laden, homoge-
neous and isotropic, forced turbulence to study the statis-
tics of relative velocities and separations between par-
ticles with different Stokes numbers. We computed the
joint distribution of particle separations and their relative
velocities. We found that the shape of the distribution
is in good agreement with the predictions of dissipation-
range theory [21]. When the difference between the two
Stokes numbers is small enough, then the distribution ex-
hibits power laws, and the exponent is related to fractal
patterns in phase space [26]. We found that the power
laws are cut off at small relative velocities, at a scale Vc.
We found that Vcdepends linearly on θ for small values
of θ, in agreement with the theoretical prediction [21].
When θ is large, by contrast, theory predicts that the

body of the distribution is broad Gaussian [21], in agree-
ment with the DNS of [13, 53]. In a log-log plot Fig, 1
this Gaussian appears as a region where P/R2 is roughly
constant. The shape of the distribution beyond V0 (here
simply set to zero) is not known. There are indications
[53] that the theory of Ref. [12] may work for the tails.
But this could not be unequivocally shown, and it must
be borne in mind that the prediction of Ref. [12] applies
to large Stokes numbers in systems with a very well de-
veloped inertial range, so that the scale-dependent Stokes
number at the largest scale is much less than unity. These
questions remain for further studies.
Dissipation-range theory [6, 14–16, 21] predicts how

the relative-velocity fluctuations depend on particle sep-
aration. This power-law dependence of the relative-
velocity moments upon particle separation is universal
(but the prefactors of the power laws are not). The orig-
inal inertial-range theories discussed above do not refer
to particle separations in the dissipation range, and at-
tempts to modify inertial-range theories to take into ac-
count dissipation-range dynamics [57, 58] were shown to
fail (Fig. 5 in Ref. [13]), so that they cannot be used
to model collision velocities of microscopic dust grains
in circumstellar accretion disks, where collisions happen
in the dissipation range. It is challenging to use DNS
to determine collision rates and velocities of small grains
deep in the dissipation range, because such encounters
are infrequent, yet significant. Usually, DNS data on
relative-particle velocities [13, 17, 53] are evaluated at
fixed separations of order η, as discussed above. The the-
ory described and tested here allows to extrapolate the
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DNS results to the relevant scales, often much smaller
than the Kolmogorov length η.

Note that Eq. (18) is essentially an expansion in powers
of St2 for small St2 where we have retained terms up to
first order in St2. We have checked from our DNS that
the correlation function on the second lines of Eq. (18)
is always negative and is proportional to St1

2 for small
St1. Eq. (18), which is confirmed by our DNS, (Fig. (3)
(c)), is clearly in disagreement with Abrahamson’s theory
[59] which predicts that the rms relative velocity of two
inertial particles is given by the sum of their individual
rms velocities. This disagreement becomes apparent if
we take the limit St2 → 0 in Eq. (18) in which case the
rms relative velocity appears as difference between the
rms velocities of an inertial particle and a tracer. This
is because Ref. [59] assumes that the motion of the two
particles are uncorrelated – an approximation of dubious

validity when the particles are close to each other, i.e.,
about to collide. This again illustrates one of the central
messages of this paper: a theory of relative velocity of two
particles must take into account the distance between
them, otherwise the theory will fail to predict collision
velocities.
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