REPRESENTATIONS OF A CLASS OF REAL B*-ALGEBRAS AS ALGEBRAS OF QUATERNION-VALUED FUNCTIONS

S. H. KULKARNI

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. For a compact Hausdorff space X , let $C(X, H)$ denote the set of all quaternion-valued functions on X . It is proved that if a real B^* -algebra A satisfies the following conditions: (i) the spectrum of every selfadjoint element is contained in the real line and (ii) every element in A is normal, then A is isometrically *-isomorphic to a closed *-subalgebra of $C(X, H)$ for some compact Hausdorff X . In particular, a real C^* -algebra in which every element is normal is isometrically $*$ -isomorphic to a closed $*$ -subalgebra of $C(X, H)$.

INTRODUCTION

Let A be a real or complex normed algebra with an involution $*$. Obviously, if A is commutative then every element in A is normal. The converse is also true for complex algebras, because the normality of $a = h + ik$ with h, k selfadjoint implies that h and k commute. Since every element in \vec{A} can be expressed uniquely in the form $h + ik$, with h and k selfadjoint, the algebra A is commutative. However, this is not true for real algebras. The algebra H of all real quaternions with the usual involution is noncommutative, though every element in H is normal. The aim of this paper is to show that, under certain assumptions, the algebras of H-valued functions are essentially the only real algebras in which every element is normal. Viswanath [9] has shown that such algebras arise naturally in the study of normal operators on real Hubert spaces.

Preliminaries

We denote the set of all real numbers by \bf{R} , the set of all complex numbers by C , and the set of all real quaternions by H. Let A be a real algebra with a unit element 1 and a an element of A . We adopt Kaplansky's definition of the spectrum of a in A denoted by $Sp(a, A)$ (or simply by $Sp(a)$ when no confusion is likely).

 $Sp(a, A) := \{s + it \in \mathbb{C} : (s - a)^2 + t^2 \text{ is singular in } A\}.$

If A is a Banach algebra, then the spectral radius of an element a in A is

Received by the editors January 21, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46L89, 47B15, 46L05.

given by the spectral radius formula

$$
r(a) := \lim_{n \to \infty} \|a^n\|^{1/n} = \sup\{(s^2 + t^2)^{1/2} : s + it \in \text{Sp}(a, A)\}.
$$

(See $[2, 4]$ for a proof.)

Our proof of the main result in this note depends on the following theorem proved in [6].

Theorem 1 [6, Theorem 11]. Let A be a real Banach algebra with a unit 1 and suppose $\|a\| \leq \alpha r(a)$ for every a in A and some constant $\alpha \geq 0$. Let $c \in A$ be such that $Sp(c) \subseteq \mathbb{R}$ and b any element of A. Then $cb = bc$, that is, the set of all elements with the real spectra lies in the centre of A .

As usual, an *involution on a real algebra A* is a map $a \rightarrow a^*$ such that for all a, b in A and s in R: (i) $(a + b)^* = a^* + b^*$, (ii) $(sa)^* = sa^*$, (iii) $(ab)^* = b^*a^*$, and (iv) $(a^*)^* = a$. An algebra A with an involution $*$ is called a $*$ -algebra. It is called an *auto* $*$ -algebra if condition (iii) is replaced by (iii)' $(ab)^* = a^*b^*$. A is called a generalized *-algebra if it is a *-algebra or an auto $*$ -algebra (cf. $[4, 7, 8]$). In the sequel, we shall use many results of $[4]$. These results were claimed to have been proved for a generalized *-algebra. Magyar [7] has pointed out that the proof of Theorem 2.3 in [4] does not work for an auto *-algebra and has supplied a proof that works. This does not affect the results in the present paper, as we shall deal only with a *-algebra. Some related topics are also discussed in [7] and [8].

Let A be a real *-algebra. A subalgebra that is closed under the involution * is called a *-subalgebra. An element a is called selfadjoint if $a^* = a$, skew if $a^* = -a$, and *normal* if $a^*a = aa^*$.

Let $Sym(A) := \{a \in A: a^* = a\}$ and $Skew(A) := \{a \in A: a^* = -a\}$. A B^* algebra is a Banach algebra A with an involution $*$ satisfying $||a^*a|| = ||a||^2$ for every a in A .

For $q = q_0 + q_1 i + q_2 j + q_3 k$ in H, q^* is defined as $q^* = q_0 - q_1 i - q_2 j - q_3 k$ and $|q|$ is defined as

$$
|q| := (q_0^2 + q_1^2 + q_2^2 + q_3^2)^{1/2}.
$$

Note that $|q|^2 = q^*q = qq^*$. $q_0 = (q + q^*)/2$ is called the real part of q denoted by $\text{Re}(q)$. H is a real B^* -algebra. For a compact Hausdorff space X and a normed linear space E, $C(X, E)$ denotes the set of all continuous E-valued functions on X. For f in $C(X, E)$, let

$$
||f|| := \sup\{||f(x)|| : x \in X\}.
$$

For f in $C(X, H)$, let $f^*(x) := (f(x))^*$ for all x in X. Then $*$ is an involution on $C(X, H)$, and $\| \, \|$ is a norm on $C(X, H)$ making it a real B^* algebra.

In the remaining part of this note A is a real B^* -algebra with a unit 1, satisfying the following conditions:

- (I) $\text{Sp}(a) \subseteq \mathbb{R}$ for every a in Sym(A),
- (II) Every element in A is normal.

 B^* condition implies that $Sp(a)$ contains no nonzero real number if $a^* = -a$ [4, Theorem 2.4]. This along with (I) yields that $Sp(a^*a) \subseteq [0, \infty)$ for every a in A by Theorem 2.3 of [4]. (See also [5].)

Note that H and $C(X, H)$ satisfy (I) and (II). So does any *-subalgebra of $C(X, H)$. It will be proved that A is isometrically $*$ isomorphic to a closed *-subalgebra of $C(X, H)$ for some compact Hausdorff space X.

Lemma 2. (i) $||a|| = r(a)$ for all a in A and Sym(A) is a commutative real Banach algebra.

(ii) For every nonzero homomorphism φ of Sym(A) to **R**, there exists a nonzero homomorphism π of A into H such that $\pi(a) = \varphi(a)$ for every a in $Sym(A)$.

Proof. (i) First B^* condition implies that $\|h^2\| = \|h\|^2$ for every h in Sym(A). Since $a^*a \in \text{Sym}(A)$ for each a in A, we can use (II) to obtain

$$
(\|a\|^2)^2 = \|a^*a\|^2 = \|(a^*a)^2\| = \|a^*(aa^*)a\| = \|a^*a^*aa\|
$$

=
$$
\|(a^2)^*a^2\| = \|a^2\|^2,
$$

so that $||a||^2 = ||a^2||$ for each a in A. Next, by induction,

$$
||a||^{2^n} = ||a^{2^n}|| \text{ for } n = 1, 2, 3, \ldots
$$

By taking the 2ⁿth root and applying the Spectral radius formula, we get, $||a|| =$ $r(a)$ for every a in A.

Now (I) and Theorem 1 imply that every selfadjoint element lies in the centre of A. In particular, $Sym(A)$ is a real commutative Banach algebra with 1.

(ii) In view of (i), there exists a nonzero homomorphism φ of Sym(A) into **R**. (In fact, Sym(A) is isometrically isomorphic to $C(Y, \mathbf{R})$ for some compact Hausdorff space y by a theorem of Arens $[2-4]$.) Let φ be such a homomorphism. We have $\varphi(1) = 1$ and

$$
\|\varphi\| := \sup\{|\varphi(a)| : a \in \text{Sym}(A), \|a\| \leq 1\} = 1.
$$

Also since $Sp(a^*a) \subseteq [0, \infty)$, we have, for every a in A, $\varepsilon + a^*a$ is invertible in A for every $\varepsilon > 0$. Clearly $(\varepsilon + a^* a)^{-1} \in \text{Sym}(A)$. Thus $\varphi(a^* a + \varepsilon) \neq 0$; that is, $\varphi(a^*a) \neq -\varepsilon$ for every $\varepsilon > 0$. Hence $\varphi(a^*a) \geq 0$. We define $\psi: A \to \mathbf{R}$ as $\psi(a) := \varphi((a + a^*)/2)$ for all a in A. It is easy to see that ψ is a continuous liear functional on A, $\psi(1) = 1 = ||\psi||$, $\psi(a^*) = \psi(a)$ for every a in A and $\psi(a^*a) = \varphi(a^*a) \ge 0$ for every a in A. In other words ψ is a normalised real state on A. Hence by Proposition 14.3 of [2], $\psi(b^*a)^2 \leq \psi(a^*a)\psi(b^*b)$ for every a, b in A . Hence

(1)
$$
\psi(ab)^{2} = \psi((a^{*})^{*}b)^{2} \leq \psi(aa^{*})\psi(b^{*}b) = \psi(a^{*}a)\psi(b^{*}b) \text{ by (II)}.
$$

Now let $N_{\psi} = \{a \in A : \psi(a^*a) = \varphi(a^*a) = 0\}$. The inequality (1) above implies that N_{ψ} is a two-sided ideal in A. It is closed as ψ is continuous. Hence $M_{\psi} := A/N_{\psi}$ is a Banach algebra (with the quotient norm) with the unit $1 + N_{\psi}$.

Claim. M_{ψ} is a division algebra. Suppose for some b in A, $b + N_{\psi} \neq$ N_{ψ} . This means $\psi(b^*b) \neq 0$. Let $c := b^*/\psi(b^*b)$ and $h := cb - 1$. Then $h \in \text{Sym}(A)$ and $\psi(h) = 0 = \varphi(h)$. Hence $\psi(h^*h) = \psi(h^2) = \varphi(h^2) = 0$ as φ is a homomorphism on Sym(A). Hence $h \in N_{\psi}$. Then $(c + N_{\psi})(b + N_{\psi}) =$ $1 + N_{\psi}$. Similarly, using normality of b, we can prove $(bc - 1) \in N_{\psi}$; that is, $(b + N_{\psi})(c + N_{\psi}) = 1 + N_{\psi}$. This proves the claim.

Now by a theorem of Mazur and Arens [2, Theorem 9.7; 1, Theorem 14.7], there is an isomorphism θ of M_{ψ} onto **R**, **C**, or **H**. Then $\pi: A \rightarrow H$ defined as $\pi(a) := \theta(a + N_w)$ is a homomorphism. It is nonzero because $\pi(1) =$ $\theta(1+N_w)=1$.

Now suppose $a \in Sym(A)$ and $\varphi(a) = 0$. Then

$$
\psi(a^*a) = \varphi(a^*a) = \varphi(a^2) = (\varphi(a))^2 = 0.
$$

Hence $a \in N_{\psi}$ and $\pi(a) = 0$. Further, if $b \in Sym(A)$ with $\varphi(b) \neq 0$, then we consider $a = 1 - b/\varphi(b)$. Clearly, $\varphi(a) = 0$. Hence, by what we have proved just now, $\pi(a) = 0$; that is, $\varphi(b) = \pi(b)$. Thus for all c in Sym(A), $\varphi(c) = \pi(c)$. \Box

Throughout this paper, by a "homomorphism," we mean a morphism of real algebras. It is worth mentioning here that if φ is a nonzero morphism of rings from **R** into itself then φ is the identity map on **R**. Hence if π is a nonzero morphism of rings from A into H such that π takes the (real) scalar multiples of 1 to reals, then π is a morphism of real algebras, that is, a homomorphism in our sense. Now let X be the set of all such nonzero homomorphisms of Λ into H. X is nonempty by Lemma 2. For a in A, we define a map $\hat{a}: X \to H$ by $\hat{a}(\pi) = \pi(a)$ for all π in X. Let $\hat{A} := \{\hat{a}: a \in A\}$. We give X the weak A topology (that is, the weakest topology on X making \hat{a} continuous for each a in A). Now we are in a position to prove the main theorem.

Theorem 3. (i) For each π in X,

$$
\|\pi\| := \sup\{|\pi(a)| : a \in A, \|a\| \le 1\} = 1.
$$

- (ii) X is a compact Hausdorff space (with respect to the weak A topology).
- (iii) For each π in X and a in Sym(A), $\pi(a)$ is real.
- (iv) For each π in X and a in Skew(A), Re($\pi(a)$) = 0.
- (v) For each π in X and a in A, $\pi(a^*) = (\pi(a))^*$.
- (vi) \tilde{A} is a closed *-subalgebra of $C(X, H)$ and the map $a \to \hat{a}$ is an isometric $*$ -isomorphism of A onto \widehat{A} .

Proof. (i) We have already noted in Lemma 2 that $r(a) = \|a\|$ for all a in A. Since H also satisfies the conditions assumed of A, $r(q) = |q|$ for all q in **H**. Further, if $(a - s)^2 + t^2$ is invertible for a in A and $s + it$ in C, then for a homomorphism π in X, $\pi((a-s)^2 + t^2) = (\pi(a) - s)^2 + t^2$ is invertible. Hence $\text{Sp}(\pi(a)) \subseteq \text{Sp}(a)$. This shows that $|\pi(a)| = r(\pi(a)) \le r(a) = \|a\|$. Thus $||\pi|| \le 1$. Since $\pi(1) = 1$, we have $||\pi|| = 1$.

(ii) Let π_1 , π_2 be distinct homomorphisms in X. Then $\pi_1(a) \neq \pi_2(a)$ for some a in A. Hence we can find disjoint open sets G_1 and G_2 containing $\pi_1(a)$ and $\pi_2(a)$, respectively. Then the inverse images of G_1 and G_2 under \hat{a} are disjoint open sets (in the weak \hat{A} topology) in X containing π_1 and π_2 , respectively. This shows that X is Hausdorff. Next, we define $K_a :=$ ${q \in H: |q| \leq ||a||}$. Then K_a is compact in the topology of H. Let K be the topological product of K_a for all a in A. Then K is compact by the Tychonoff theorem. Now let $\pi \in X$. Then, from (i), $\pi(a) \in K_a$ for each a in A. Thus $\pi \in K$. Hence X is a subset of K. Now it is straightforward to show that the relative topology on X is the same as the weak A topology and that X is a closed subset of K . Hence X is compact.

(iii) Let $a \in Sym(A)$, $\pi \in X$, and $\pi(a) = s + t$, where s is real and $t = t_1 i + t_2 j + t_3 k$. If $t \neq 0$, let $b:=(a-s)/(2\|a-s\|) \neq 0$. Then $b \in Sym(A)$ and $||b|| < 1$. By Ford's square-root lemma [1, Proposition 12.11], there exists c in Sym(A) such that $1 - b^2 = c^2$. Thus,

$$
|1 - \pi(b^2)| = |\pi(c^2)| \le ||c||^2 \text{ by (i)}.
$$

Since Sym(A) is isometrically isomorphic to $C(Y, R)$ for some compact Hausdorff space Y and b, $c \in Sym(A)$, we have $||c||^2 \le ||c^2 + b^2|| = ||1|| = 1$. Thus,

$$
|1-t^2/(4||a-s||^2)| = |1-\pi(b^2)| \leq ||c||^2 \leq 1
$$

This shows that $t^2 \ge 0$. But $t^2 = -(t_1^2 + t_2^2 + t_3^2) \le 0$. Hence $t = 0$ and $\pi(a) = s$.

(iv) Let $a \in \text{Skew}(A)$, $\pi \in X$, and $\pi(a) = s + t$, where s is real and $t = t_1 i + t_2 j + t_3 k$. We shall show that $s = 0$. Consider $b = a + \alpha$ for α in **R**. Then $b^* = -a + \alpha$ and

$$
(s+\alpha)^2 + t_1^2 + t_2^2 + t_3^2 = |\pi(b)|^2 \le ||b||^2 \text{ by (i)}
$$

= $||b^*b|| = ||\alpha^2 - a^2|| \le \alpha^2 + ||a||^2$.

Since this is true for every real α , we must have $s = 0$.

(v) Let $a \in A$. Then $a = b + c$, where $b = (a + a^*)/2 \in Sym(A)$ and $c = (a - a^*)/2 \in \text{Skew}(A)$. Hence for every π in X, $\pi(b)$ is real by (iii) and $\text{Re}\,\pi(c) = 0$ from (iv). Hence $(\pi(b))^* = \pi(b)$ and $(\pi(c))^* = -\pi(c)$. Thus

$$
\pi(a^*) = \pi(b - c) = \pi(b) - \pi(c) = (\pi(b))^* + (\pi(c))^*
$$

= $(\pi(b + c))^* = (\pi(a))^*$.

(vi) It is obvious that \hat{A} is a subalgebra of $C(X, H)$ and the map $a \rightarrow \hat{a}$ is a homomorphism. It follows from (v) that $(a^*)^{\frown} = (\hat{a})^*$ for each a in A. Thus A is a *-subalgebra and the map $a \rightarrow \hat{a}$ is a *-homomorphism. Further,

$$
\|\hat{a}\| := \sup\{|\hat{a}(\pi)| : \pi \in X\}
$$

= $\sup\{|\pi(a)| : \pi \in X\} \le ||a||$ by (i).

For every a in A, $a^*a \in Sym(A)$. Since Sym(A) is isometrically isomorphic to $C(Y, \mathbf{R})$ for some compact Hausdorff space Y, there exists a nonzero homomorphism φ of Sym(A) into **R** such that $|\varphi(a^*a)| = \|a^*a\|$. Now by Lemma 2, there exists π in X such that $\pi = \varphi$ on Sym(A). Thus,

$$
||a||2 = ||a*a|| = |\varphi(a*a)| = |\pi(a*a)| = |\pi(a*)\pi(a)|
$$

= |(\pi(a))^{*} \pi(a)| = |\pi(a)|²,

that is, $||a|| = |\hat{a}(\pi)|$. Hence $||\hat{a}|| = ||a||$ for every a in A. This shows that the map $a \rightarrow \hat{a}$ is an isometry from A to \hat{A} . In particular, it is 1-1, and hence an isometric $*$ -isomorphism. This also implies that A is complete and hence closed in $C(X, H)$. □

Remark 4. The presence of a unit in Λ is not essential in Theorem 3. If Λ does not have a unit then the spectrum of an element a in A is defined as

> $\text{Sp}(a, A) = \{0\} \cup \{s + it \in \mathbb{C} \setminus \{0\} : (2sa - a^2)/(s^2 + t^2)$ is quasi-singular in A .

Suppose A is a real B^{*}-algebra without unit and let $a \rightarrow L_a$ be the left regular representation of A on A .

Let $B = \{L_a + sI : a \in A, s \in \mathbb{R}\}\$, where *I* denotes the identity operator. We define an involution on B by

$$
(L_a + sI)^* = L_{a^*} + sI \quad \text{for all } a \in A, s \in \mathbf{R}.
$$

Yood has shown that B is a B*-algebra with a unit I and the map $a \to L_a$ is an isometric *-monomorphism of A into B (see [1, p. 67]). Further, it is straightforward to check that if A satisfies the conditions (I) and (II) , then so does B .

Acknowledgment

The author thanks the referee for several comments towards the improvement of the paper and, in particular, for drawing the author's attention to the references [7, 8].

REFERENCES

- 1. F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, Berlin, 1973.
- 2. K. R. Goodearl, Notes on real and complex C^* algebras, Shiva, Birkhauser, Boston, MA, 1982.
- 3. L. Ingelstam, Real Banach algebras, Ark. Mat. 5 (1964), 239-270.
- 4. S. H. Kulkarni and B. V. Limaye, $Gelfand-Naimark theorems for real Banach $*$ algebras,$ Math. Japan. 25 (1980), 545-558.
- 5. S. H. Kulkarni, A note on the Shirali-Ford theorem, The Math. Student 48 (1984), 343-347.
- 6. __, Topological conditions for commutativity of a real Banach algebra, Houston J. Math 14(1988), 235-245.
- 7. Z. Magyar, On commutativity and the spectral radius property of real generalized *-algebras, Acta. Sei. Math. (Szeged) 53 (1989), 339-343.
- 8. \ldots , A characterization of (real or complex) Hermitian algebras and equivalent C^* -algebras, Acta. Sei. Math. (Szeged) 53 (1989), 345-353.
- 9. K. Viswanath, Operators on real Hubert spaces, J. Indian Math. Soc. 42 (1978), 1-13.

Department of Mathematics, Indian Institute of Technology, Madras-600036, India