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We prove a version of the Schwarz lemma for holomorphic mappings from

the unit disk into the symmetric product of a Riemann surface. Our proof is

function-theoretic and self-contained. Themain novelty in our proof is the use of

the pluricomplex Green’s function. We also prove several other Schwarz lemmas

using this function.

1 Introduction

The main result of this article is the following:

Theorem 1. Let X be a Riemann surface and f : D→ Symn(X ) be holomorphic. Then

Hn
MX

(
π−1
Sym(f (x)),π−1

Sym(f (x0)
)
≤ MD(x ,x0), ∀x ,x0 ∈ D. (1)

The notation used in the theorem will be explained in Section 2. Briefly, Symn(X ) is the n-
fold symmetric product of X and πSym is the natural map from Xn to Symn(X ). The Möbius

pseudodistance associated to X is denoted MX and HMX
is the Hausdorff pseudodistance

induced on subsets of X byMX . Given a point p ∈ Symn(X ),π−1
Sym(p) here denotes the subset

ofX comprising the coordinate points of (any element of) π−1
Sym{p}. Note that in our notation,

π−1
Sym{p} is not the same as π−1

Sym(p).
Remark 2. Note that Theorem 1 is trivially true whenever X is a compact Riemann surface.

Also for a domain D ⊂ C, it is easy to see that either D is Carathéodory hyperbolic (i.e, the

Möbius pseudodistance is a distance) or MD ≡ 0. This is not true for Riemann surfaces; see

[Sta75]. We emphasize that Theorem 1 applies to all Riemann surfaces including those for

which the Möbius pseudodistance is not a distance but yet not identically 0.
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The genesis of Theorem 1 is a result by Nokrane and Ransford [NR01, Theorem 1.1] which

is in the setting of algebroid multifunction taking values in the unit disk. This was later

extended to proper holomorphic correspondences from the unit disk to any bounded planar

domain by Chandel [Cha17, Theorem 1.7]. In our notation, the result of Nokrane and Rans-

ford is Theorem 1 with X = D while that of Chandel is the case when X is any bounded

planar domain.

Ourmotivation for formulating and proving Theorem 1 comes from an earlier work [HJ18]

in which we investigated the Minkowski function of a quasi-balanced domain. During the

course of our study, we realized that a special case of [NR01, Theorem 1.1] follows easily from

simple observations about the Minkowski function and an extremal function (now popularly

known as the pluricomplex Green’s function) studied by Lempert [Lem81], Klimek [Kli85] and

Demailly [Dem87]. A natural question to ask is whether these elementary observations have

wider applicability.

The symmetrized bidisk and polydisk have been the subject of intense research for the

past two decades; see, for instance, [AY01, EZ05, Nik06, ALY13]. More recently, the sym-

metric product of more general objects has also been studied by several researchers [CG15,

BBDJ18, CG18, Zwo18]. The symmetric product of a Riemann surface can be given a natural

complex structure that makes it into a complex manifold. It is, therefore, natural to look

for an extension of the original result of Nokrane and Ransford in the setting of symmetric

products of a Riemann surface and Theorem 1 is the desired extension. The proofs of both

[NR01, Theorem 1.1] and [Cha17, Theorem 1.7] rely on the holomorphic functional calculus

(the underlying Banach algebra being the space of n×n complex matrices). It is unclear how

these ideas can be generalized to the setting of an arbitrary Riemann surface. In contrast,

our proof of Theorem 1 is almost entirely self-contained and uses tools solely from complex

analysis. Specifically, we require only basic facts about plurisubharmonic functions, invari-

ant metrics and some standard theorems from complex analysis. The central tool in our proof

is the pluricomplex Green’s function alluded to in the previous paragraph.

We will also give several applications that illustrate the scope of our techniques. A case

in point is the situation of equality in (1), which can be studied using our techniques in the

case when X = D. This has been studied by Nokrane and Ransford [NR01, Theorem 1.2] and

our analysis is reminiscent of theirs but simpler.

Theorem 3. Let f : D→ Gn be a holomorphic function such that

Hn
MD

(
π−1(f (x)),π−1(f (0)

)
=MD(x , 0), (2)

for x ∈ U and U ⊂ D a non-empty open subset. Then we can find an automorphism of D, say

д, such that дSym ◦ f is the n-th root multi-function, i.e., the map

z 7→ π (ζ1(z), . . . , ζn(z)),

where ζ1(z), . . . , ζn(z) ∈ D are the n-th roots of z.

HereGn is the symmetrized polydisk and π is the map whose coordinates are the elementary

symmetric polynomials; see Section 2.4 for precise definitions including that of дSym.
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As another application, we shall also use our techniques to give a Schwarz lemma for

quasi-balanced domains that extends the well-known Schwarz lemma for balanced domains

(Result 23); see Theorem 25. Using this lemma, we shall then sketch a straightforward proof

of a version of Schwarz lemma for the spectral unit ball originally proved by Bharali [Bha07].

Organization

Section 2 contains a brief treatment of all the tools required in our proofs. We present our

Schwarz lemma for quasi-balanced domains in Section 3. The proofs of Theorems 1 and 3

are contained in Section 4. Finally, we briefly sketch the proof of a version of the Schwarz

lemma for the spectral unit ball in Section 5.

Notation

We will use D to denote the unit disk in the complex plane. The space of holomorphic map-

pings from a complex manifold X into a complex manifold Y will be denoted O(X ,Y ). We

use | · | for the usual Euclidean norm in Cn, irrespective of the dimension. All manifolds will

be assumed to be connected. All other notations used will be introduced in Section 2.
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2 Tools

2.1 The pluricomplex Green’s function

In this section, we define and prove basic facts about an extremal function defined using

plurisubharmonic functions. Our treatment is from [Kob98, p. 184] where the definition is

attributed to Klimek [Kli85]. The paper by Demailly [Dem87] contains further properties of

this function.

Definition 4. Let X be a complex manifold. Fix z0 ∈ X and define the extremal function

λX (z, z0) := sup{ϕ(z) : ϕ ∈ PX (z0)}, (3)

where PX (z0) is the collection of functions ϕ on X that satisfy:

1. ϕ is upper semi-continuous,
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2. 0 ≤ ϕ < 1,

3. logϕ is plurisubharmonic on X ,

4. ϕ(z0) = 0,

5. for any coordinate system z = (z1, . . . , zn) with origin at z0, the quantity
ϕ(x)
|z(x)| is

bounded above in a neighbourhood of z0.

Remark 5. In the above definition, functions that are identically −∞ are considered to be

plurisubharmonic whence the function that is identically 0 is an element of PX (z0). So the

collection PX (z0) is always non-empty.

Remark 6. The function log λX (z, z0) is known in the literature as the pluricomplexGreen’s

functionwith a logarithmic pole at z0. The pluricomplex Green’s function is well-studied

and is at the heart of many deep results (see [Kli91] and the papers cited in the introduction

for a small sample). For our purposes, the function λX—which we will refer to throughout

this paper as the extremal function—is more convenient to work with.

Remark 7. IfD ⊂ Cn is a bounded domain then for each z0 ∈ D, the function |z−z0 | ∈ PD(z0).
Therefore λD(z, z0) > 0 ∀z ∈ D \ {z0}.

Lemma 8. Let X and Y be complex manifolds and let f : X → Y be holomorphic. Then

λY (f (x), f (z0)) ≤ λX (x , z0).

Proof. It suffices to show that if ϕ ∈ PY (f (z0)) then ϕ ◦ f ∈ PX (z0). Only the final condition in
the definition of PX (z0) needs to be checked. For a coordinate system z = (z1, . . . , zn) around
z0 andw = (w1, . . . ,wn) around f (z0), we have

logϕ ◦ f (x) − log(|z(x)|) = logϕ ◦ f (x) − log |w(f (x))|

+ log
|w(f (x))|
|z(x)| .

The expression on the right hand side is clearly bounded above in a neighbourhood of z0 and

we are done. �

Weneed a version of Schwarz lemma for subharmonic functions proved by Sibony in order

to compute the extremal function for the unit disk D.

Lemma 9 (Sibony [Sib81]). Let u be an upper semi-continuous function on D such that

1. logu is subharmonic,

2.
u(z)
|z |2 is bounded on D∗,

3. 0 ≤ u < 1 on D.

Then u(z) ≤ |z |2 ∀z ∈ D. If u(z0) = |z0 |2 for some z0 ∈ D, z0 , 0, then u(z) ≡ |z |2.

Lemma 10. The extremal function λD(z, 0) = |z |.

Proof. Clearly λD(z, 0) ≥ |z |. Conversely, if ϕ ∈ PD(z, 0) then ϕ2 is subharmonic and
ϕ2(z)
|z |2

is bounded above on D∗ by the final condition in the definition of PD(z0). This means that

ϕ(z) ≤ |z | by Lemma 9 and we are done. �
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2.2 The Möbius pseudodistance

We now define the Möbius pseudodistance of a complex manifold X and prove some of its

key properties.

Definition 11. Let X be a complex manifold. We define theMöbius pseudodistance on X

to be

MX (z1, z2) := sup{| f (z1)| : f ∈ O(X ,D), f (z2) = 0} ∀z1, z2 ∈ X .

Remark 12. Observe that the above definition is analogous to that of the Carathéodory pseu-

dodistance except that we use the Möbius distance of D in the definition instead of the

Poincaré distance. The proof that the above definition actually gives a pseudodistance fol-

lows along the same lines as that for the Carathéodory pseudodistance. As expected, holo-

morphic mappings are distance decreasing under this pseudodistance and biholomorphisms

are isometries. It is also clear that ifCX denotes the Carathéodory pseudodistance on X then

tanhCX =MX . See [JP13, Chapter 2] for details.

Remark 13. It follows from Lemma 10 that

λD(z, z0) =MD(z, z0).

Remark 14. Let B(a, r ) be the ball of radius r centred at point a ∈ Cn. Then

M(z,a) = |z − a |
r

∀z ∈ B(a, r ).

Remark 15. If Di are disks in the plane then for (z1, . . . , zn) ∈ D1 × · · · × Dn, we have

MD1×···×Dn

(
(z1, . . . , zn), (a1, . . . ,an)

)
= max

i
MDi

(zi ,ai).

Remark 16. Using the Remark 14 and the factMX is distance decreasing under the inclusion

map, one easily shows that MX is continuous on X × X ; see [JP13, Proposition 2.6.1].

Definition 17. We say that the complex manifold X is Carathéodory hyberbolic ifMX is

a distance.

Remark 18. Bounded domains are Carathéodory hyperbolic. This follows from the obser-

vation that if z,w ∈ D, z , w , then some coordinate projection is a bounded holomorphic

function that separates z andw .

Lemma 19. Let X be a complex manifold. Then

0 ≤ MX < 1.

Proof. Let z,w ∈ X be such that MX (z,w) = 1. Then by the very definition of MX , we can

find a sequence of holomorphic functions fn : X → D such that fn(w) = 0 and | fn(z)| → 1.

By Montel’s theorem, O(X ,D) is a normal family. This means that some subsequence of fn
must converge in the compact-open topology to a holomorphic map f : X → D. But this is
absurd as | fn(z)| → 1. �
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The next theorem gives the crucial link between the Möbius pseudodistance of a com-

plex manifold and its extremal function. This link is the central tool used in the proof of

Theorem 1.

Proposition 20. Let X be a complex manifold. Then for a fixed z0 ∈ X , the functionMX (·, z0)
is plurisubharmonic. In fact, logMX (·, z0) is plurisubharmonic.

Proof. From Remark 16,MX is a continuous function. The fact thatMX (·, z0) is plurisubhar-
monic is now straightforward from the fact thatMX (·, z0) is continuous and a supremum of

plurisubharmonic functions. The same argument also shows that the function logMX (·, z0)
is plurisubharmonic. �

Remark 21. It is now straightforward to prove that for any z0 ∈ X , the function M(·, z0) ∈
PX (z0). Thus,MX (·, z0) ≤ λX (·, z0).

2.3 The Minkowski function of a quasi-balanced domain

Let p1,p2, . . . ,pn be relatively prime positive integers. We say that a domain D ⊂ Cn is

(p1,p2, . . . ,pn)-balanced (quasi-balanced) if

λ • z ∈ D ∀λ ∈ D,∀z ∈ D,

where for z = (z1, z2, . . . , zn) ∈ D, we define λ • z := (λp1z1, λp2z2, . . . , λpnzn). If p1 = p2 =
· · · = pn = 1 above, then we say D is a balanced domain (balanced domains are also known

as complete circular domains in the literature).

Given a (p1,p2, . . . ,pn)-balanced domain D ⊂ Cn, we define the Minkowski function hD :

C
n → C by

hD(z) := inf{t > 0 :
1

t
• z ∈ D}.

Clearly D = {z ∈ Cn : hD(z) < 1} and hD(λ • z) = |λ |hD(z). This function was first studied by

Nikolov [Nik06] (see also [Bha06]). It turns out that hD is plurisubharmonic if and only if D

is additionally pseudoconvex; see [Bha06, Lemma 2.3].

Section 2.2 of [JP13] contains an extensive treatment of the properties of the Minkowski

function of both balanced and quasi-balanced domains.

2.4 The symmetric product of a Riemann surface

Let X be a Riemann surface. Given (x1, . . . ,xn) ∈ Xn, we denote by 〈x1, . . . ,xn〉 the image in

the quotient topological space Symn(X ) := Xn/Sn under the Sn-action on Xn that permutes

the entries of (x1, . . . ,xn). We will also abbreviate the element

〈z1, . . . , z1︸     ︷︷     ︸
µ1-times

, z2, . . . , z2︸     ︷︷     ︸
µ2-times

, . . . , zk , . . . , zk︸     ︷︷     ︸
µk -times

〉, µ1 + · · · + µk = n,
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by

〈z1; µ1, . . . , zk ; µk〉.
The map

Xn ∋ (x1, . . . ,xn) 7−→ 〈x1, . . . ,xn〉 ∀(x1, . . . ,xn) ∈ Xn

will be denoted by πn
Sym

. We shall drop the superscript when there is no ambiguity. It is easy

to see that there is a natural complex structure on Symn(X ) that makes it a complex manifold

of dimension n (see below). With this complex structure, the map πSym is a branched proper

holomorphic mappings whose set of critical points is

{(z1, . . . , zn) ∈ Xn : zi = zj for some i , j}.

The symmetrized polydisk Gn is a quasi-balanced domain in Cn with weights (1, 2, . . . ,n)
defined using the elementary symmetric polynomials as follows. Let σj , j = 1, . . . ,n, denote

the elementary symmetric polynomial of degree j in n indeterminates. The map π (n) : Cn →
C
n is defined as:

π (n)(z1, . . . , zn) :=
(
σ1(z1, . . . , zn),σ2(z1, . . . , zn), . . . ,σn(z1, . . . , zn)

)
,

(z1, . . . , zn) ∈ Cn .

Again, we shall drop the superscript when there is no scope for confusion.

The symmetrized polydisk, Gn, is defined as Gn := π (Dn). It is easy to see that Gn is

a (1, 2, . . . ,n)-balanced domain in Cn, whence Gn is a holomorphic embedding of the n-fold

symmetric product of D into Cn. It is also easy to see that the Minkowski functional of Gn is

given by

hGn (z1, . . . , zn) := max{|λ1 |, . . . , |λn | : π (n)(λ1, . . . , λn) = (z1, . . . , zn)}.

The above formula implies that Gn is pseudoconvex. This also follows by appealing to the

fact that the proper image of a pseudoconvex domain is pseudoconvex. This automatically

means that Gn is a domain of holomorphy.

We now give a brief description of the complex structure on the topological space Symn(X )
when X is Riemann surface. Given subsets Vj ⊆ X that are open, let us write:

〈V1, . . . ,Vn〉 :=
{
〈x1, . . . xn〉 : xj ∈ Vj , j = 1, . . . ,n

}

The set 〈V1, . . . ,Vn〉 is an open subset of Xn
sym by the defining property of the quotient topol-

ogy. Given a point p ∈ Symn(X ), p = 〈p1, . . .pn〉, choose a holomorphic chart (Uj ,φj) of X at

pj , j = 1, . . . ,n, such that

Uj ∩Uk = ∅ if pj , pk and Uj = Uk if pj = pk .

The above choice of local charts ensures that the mapΨp : 〈U1, . . . ,Un〉 → Cn given by

Ψp : 〈x1, . . . ,xn〉 7−→
(
(φ1(x1), . . . ,φn(xn)), . . . , (φ1(x1), . . . ,φn(xn))

)

is a homeomorphism. This follows from the Fundamental Theorem of Algebra. The col-

lection of all such charts (〈U1, . . . ,Un〉,Ψp) produces a holomorphic atlas on Symn(X ). The
following lemma is easy to prove and we omit the proof.
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Lemma 22. Let X be a Riemann surface and for 1 ≤ k < n, define

Vk := {〈z1, . . . , zn〉 ∈ Symn(X ) : the set {z1, . . . , zn} has precisely k elements}

Then Vk is an analytic subvariety of Symn(X ).

The book [JP13] contains an exhaustive account of the various properties of the sym-

metrized polydisk. The book [Whi72] is the canonical reference for the symmetric product

in general.

3 A Schwarz lemma for quasi-balanced domains

The following version of Schwarz lemma for balanced domains is well-known. This version

follows easily from the fact that holomorphic maps contract under the Lempert function and

the relationship between the Lempert function and the Minkowski function of a balanced

pseudoconvex domain.

Result 23 (Proposition 3.1.1 of [JP13]). Let D1 ⊂ Cm and D2 ⊂ Cn be balanced pseudoconvex
domains with Minkowski functions h1 and h2, respectively. Then given any holomorphic map

f : D1 → D2 with f (0) = 0, we have

h2(f (z)) ≤ h1(z).

We will now prove an analogue of the above result for quasi-balanced domains.

Theorem 24. Let D be a (p1, . . . ,pn)-balanced pseudoconvex domain with highest weight pn.

Then

h
pn
D
(z) ≤ λD(z, 0) ≤ hD(z).

Proof. First observe that the pseudoconvexity of D ensures that log hD is plurisubharmonic.

Fix 0 < ε < 1 and consider the set

K := {w ∈ D : hD(w) = ε}.

Note that 0 < K . Observe that for any z ∈ D such that 0 < hD(z) < ε , we can find 0 < t < 1

such that for some z′ ∈ K , we have t • z′ = z. Hence hpn
D
(z) = tpnhpn

D
(z′). As 0 < K , we can

trivially write the inequality

h
pn
D
(w) ≤ C |w | ∀w ∈ K ,

for some C > 0, suitably large. It is also easy to see that |z | ≥ tpn |z′|. Thus,

h
pn
D
(z) = tpnhpn

D
(z′) ≤ Ctpn |z′| ≤ C |z |.

Therefore
h
pn
D
(z)

|z | is bounded in a neighbourhood of 0. Thus, h
pn
D

∈ PD(z, 0) whence hpn (z, 0) ≤
λD(z, 0). This inequality is obviously also true if hD(z0) = 0.
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Now for a fixed z with hD(z) , 0, consider the map

ϕ : D ∋ λ 7→ λ • z

hD(z)
∈ D.

We then have

λD(z, 0) ≤ λD(hD(z), 0) = hD(z).
On the other hand, if hD(z) = 0, for each n ∈ Z+, the element n • z ∈ D. We repeat the above

argument with the element n • z instead of z
hD (z) . It is clear that λD(z, 0) ≤ 1/n. This proves

that λD(z, 0) ≤ hD(z) and we are done. �

The above theorem yields the following analogue of Schwarz lemma for pseudoconvex

quasi-balanced domains.

Theorem 25 (Schwarz Lemma). Let D1 ⊂ Cn and D2 ⊂ Cm be pseudoconvex quasi-balanced

domains. If f : D1 → D2 is holomorphic and f (0) = 0 then

h
p

D2
(f (z), 0) ≤ hD(z, 0) ∀z ∈ D,

where p is highest weight of the quasi-balanced domain D2

Remark 26. The above theorem subsumes Result 23. See [Bha06, Theorem 1.6] for a proof of

the above Schwarz lemma using the Lempert function instead of the extremal function.

The following is a version of Schwarz lemma that follows from Theorem 25. This re-

sult was proved by Ransford–Nokrane [NR01] in a formulation involving algebroid multi-

functions.

Theorem 27. Let f : D→ Gn be holomorphic with f (0) = 0 and f (z) = π (λ1, . . . , λn). Then

max{|λ1 |, . . . , |λn |} ≤ |z |1/n .

Remark 28. As alluded to in the introduction, the above observation was the impetus for this

paper.

4 Proofs of the main results

Our strategy is to establish that the function Hn
MX

(π−1
Sym(z),π−1

Sym(z0)) (see (1)), is intimately

related to the extremal function of Symn(X ) via a function h1 which we will define below.

Let X be a Riemann surface and fix z0 ∈ Symn(X ). Define the function h1 : Symn(X ) →
[0, 1) by

h1(z) := max

(
max
i

∏

j

MX (zi ,aj),max
i

∏

j

MX (zj ,ai)
)
, (4)

where z0 = 〈a1, . . . ,an〉 is a fixed point and we have written z as 〈z1, . . . , zn〉. We also define

the function h : Symn(X ) → [0, 1) by

h(z) := HMX
(π−1

Sym(z),π−1
Sym(z0)) = HMX

({z1, . . . , zn}, {a1, . . . ,an}), (5)
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where π−1
Sym(z) and π−1

Sym(z0) are defined as in Theorem 1. Observe that from the very defini-

tions, we have

hn(z) ≤ h1(z) ∀z ∈ Symn(X ). (6)

Our proof of the main theorem hinges on the following theorem combined with Lemma 8

and the fact that λD(x ,x0) =MD(x ,x0). We, once again, emphasize that the Riemann surface

X is arbitrary and in view of this, Remark 5 is pertinent in what follows.

Theorem 29. Let V be the set of critical values of the map πSym : Xn → Symn(X ). For each
z0 ∈ Symn(X ) \V , defining h1 as in (4), we have

h1 ∈ PSymn(X )(z0). (7)

Proof. From the very definition, h1 is continuous, h1(z0) = 0 and 0 ≤ h1 < 1. We first

show that the function logh1 is plurisubharmonic on Symn(X ). Fix z ∈ Symn(X ) \ V , z =
〈z1, . . . , zn〉. Let (U ,ψ ) be a coordinate chart around z such that ψ (z) = 0. We can find an

open set B ⊂ U such that:

1. The mapψ |B is a biholomorphism onto a ball B(0, r ),
2. We can find an inverse (π̃1, . . . , π̃n) of πSym defined on B such that π̃i(z) = zi .
For y ∈ B, we can write

h1(y) = max

(
max
i

∏

j

MX (π̃i(y),aj),max
i

∏

j

MX (π̃j(y),ai)
)
.

Now Proposition 20, together with basic properties of plurisubharmonic functions, shows

that logh1 is plurisubharmonic on Symn(X ) \V . By Riemann’s removable singularities the-

orem for plurisubharmonic functions ([Gun90, Theorem 3, p. 178]), the function h1 extends

to be a plurisubharmonic function on Symn(X ).
It remains to show that the final condition in the definition of PX (z0) is satisfied by h1. Let

(U ,ψ ) be any coordinate chart around z0 such thatψ (z0) = 0. Choose B and π̃i as before. Let

Di ⊂ X be open pairwise disjoint coordinate disks that contain ai . By continuity, shrinking

B if necessary, we can assume (π̃1, . . . , π̃n)(B) ⊂ D1 × · · · × Dn. By the distance decreasing

property of the Möbius pseudodistance and Remark 15, we now have

max
i

MDi
(π̃i(z),ai) ≤ MB(z, z0) ∀z ∈ B.

From Remark 14,MB(z, z0) = |ψ (z)|
r

. The above equation, combined with the fact thatMX ≤
MDi

, therefore shows

max
i

MX (π̃i(z),ai) ≤
|ψ (z)|
r

∀z ∈ B.

From the very definition of h1, it is now follows that

h1(z) ≤
|ψ (z)|
r

∀z ∈ B.

The function h1 satisfies all the conditions required for it to be an element of PX (z0) and we

are done.

�
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Remark 30. It is not hard to see that λX (·, z0) ∈ PX (z0) (see [Kli85, Corollary 1.3]). Therefore,
in the definition of h1, we might as well have used the function λX instead of the function

MX and the same proofmutatis mutandis would show that the modified function is in PX (z0)
as well.

The following corollary is immediate from (6) and Theorem 29.

Corollary 31. For each z0 ∈ Symn(X ) \V

hn(z) ≤ h1(z) ≤ λSymn(X )(z, z0).

Before we come to the proof of Theorem 1, we need one final lemma.

Lemma 32. With the same notation as Theorem 1, let 1 ≤ k ≤ n be the highest integer such

that for some x0 ∈ D, writing f (x0) = 〈x01 , . . . ,x0n〉, the set {x01 , . . . ,x0n} has k elements. Then:

1. Except for x in a discrete set E ⊂ D, f (x) = 〈x1, . . . ,xn〉 also has the property that

{x1, . . . ,xn} has k elements;

2. For each x ∈ D \ E, we can find a disk Vx ⊂ D \ E centred at x , holomorphic maps

f̃x ,1, . . . , f̃x ,k : Vx → X and positive integers µ1, . . . , µk whose sum is n such that

f (y) =
〈
f̃x ,1(y); µ1, f̃x ,2(y); µ2, . . . , f̃x ,k(y); µk

〉
,∀y ∈ Vx .

Proof. Let E ⊂ D be the set of all elements each x ∈ D with the property that f (x) =
〈x1, . . . ,xn〉 is such that {x1, . . . ,xn} has fewer than k elements. By Lemma 22, the collec-

tion of all points w in Symn(X ) with the property that, writing w as 〈w1, . . . ,wn〉, the set

{w1, . . . ,wn} has fewer than k elements is an analytic subvariety of Symn(X ) (Lemma 22).

If E is an indiscrete set, it follows from the principle of analytic continuation that E = D, a

contradiction.

Now let x ∈ D \ E and f (x) = 〈x1; µ1, . . . xk ; µk〉, µ1 + · · · + µk = n. LetUi ⊂ X be pairwise

disjoint coordinate disks centred at xi . Then by continuity, we can find a disk Vx ⊂ D \ E
centred at x such that

f (Vx ) ⊂
〈
U1, . . . ,U1︸      ︷︷      ︸
µ1−times

, . . . ,Uk , . . . ,Uk︸      ︷︷      ︸
µk−times

〉
.

As the Ui are pairwise disjoint and for each y ∈ Vx and writing f (y) = 〈y1, . . . ,yn〉, the
cardinality of {y1, . . . ,yn} is k , it is clear that we can define continuous maps f̃x ,1, . . . , f̃x ,k :

V → X such that

f (y) =
〈
f̃x ,1(y); µ1, f̃x ,2(y); µ2, . . . , f̃x ,k(y); µk

〉
,∀y ∈ Vx .

The fact that the maps f̃x ,1, . . . , f̃x ,k are holomorphic is a simple consequence of the way the

complex structure on Symn(X ) is defined.
�
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Proof of Theorem 1

Let E and k be as in Lemma 32. For x ∈ D \ E, we can find a disk Vx and holomorphic maps

f̃x ,1, . . . , f̃x ,k defined onVx satisfying the conclusion of Lemma 32. We now define f̂ onVx by

Vx ∋ y 7→ πkSym

(
f̃x ,1(y), . . . , f̃x ,k(y)

)
.

The above definition yields a holomorphic map f̂ : D \ E → Symk(X ). By Riemann’s re-

movable singularities theorem for subharmonic functions, λD\E ≡ λD |D\E . Fix y ∈ D \ E and

define the functions ĥ and ĥ1 on Symk(X ) with respect to the point f̂ (y) and analogous to h

and h1 (see (4) and (5)), respectively. It follows from Corollary 31 and Lemma 8 that

ĥn( f̂ (x)) ≤ ĥ1( f̂ (x)) ≤ MD(x ,y) ∀x ∈ D \ E.

It is obvious that

h1(f (x)) ≤ ĥ1( f̂ (x)),
where h1 is defined on Symn(X ) with respect to the point f (y). Thus

h1(x) ≤ MD(x ,y) ∀x ∈ D \ E.

From (4), it is clear that if we view h1 as a function of both x and y, it is continuous on D×D.
So is the functionMD(x ,y). This combined with (6) delivers the theorem.

Proof of Theorem 3

In this proof, we shall tacitly identify Symn(D) with Gn without explicit mention. Let z0 :=

f (0) = 〈a1, . . . ,an〉 and consider the functions h as before defined on Symn(D) with respect

to the point f (0). It is harmless to assume that 0 < U .

Claim: We can find an open disk G ⊂ U and a holomorphic function F : G → D such that for

some 1 ≤ j0 ≤ n, we have

hn(x) =MD(F (x),aj0) ∀x ∈ G .

Proof of claim: We adopt the same notation as Lemma 32. Choose x0 ∈ U \ E. We have

h(x0) =MD( f̃x0,i0(x0),aj0) for some choice of 1 ≤ i0, j0 ≤ k (the choice might not be unique).

Let i0, . . . , il and j0, . . . , jl be all the indices such that h(x0) = MD( f̃x0,im (x0),ajm ) where
0 ≤ m ≤ l . We can find a disk G ⊂ Vx0 ∩U centered at x0 such that for each x ∈ G, h(f (x))
is one of the functionsMD( f̃x0,im (x),ajm ), 1 ≤ m ≤ l . Define the sets

Em :=
{
x ∈ G : h(f (x)) =MD

(
f̃x0,im (x),ajm

)}
, 0 ≤ m ≤ l .

Each Em is a closed subset of G and
⋃l
m=0 Em = G. Consequently, one of the sets Em has

non-empty interior and we can rename G to be any disk contained in this Em and choose F

to be the corresponding f̃im .
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With the claim in hand, the proof of the theorem is not hard. Let aj0 , G and F be as in the

claim. We may assume that aj0 < G. Let ϕ ∈ Aut(D) be the automorphism that interchanges

0 and aj0 . We have hn(ϕSym ◦ f (x)) =MD(ϕ ◦ F (x), 0))n = |ϕ ◦ F (x)|n ∀x ∈ G. By hypothesis,

this means that

|ϕ ◦ F (x)|n = |x | ∀x ∈ G .
But any branch of n

√
· on G satisfies the above equation as well proving that for some θ ,

eiθ (ϕ ◦ F ) is just some branch of the n
√
·. Let ΘSym be the automorphism of Gn associated to

rotation by eiθ . Replacing f with ΘSym ◦ ϕSym ◦ f , we may assume that f |G lifts over π to a

map into Dn, one of whose components is a branch of n
√
·.

Writing f as (f1, . . . , fn), consider the polynomial over O(D)
P(x ,y) := yn + f1(x)yn−1 + · · · + fn−1(x)yn−1 + fn(x)

From the conclusion of the preceding paragraph, we can find a n-th root of unity ζ such that

P(xn,xζ ) ≡ 0 on G. Consequently, P(xn,xζ ) ≡ 0 on D by the identity theorem. If η is any

othern-th root of unity, we see that P(xn,xηζ ) ≡ 0 onD. Therefore f (x) = π (ζ1(x), . . . , ζn(x))
where n

√
x = {ζ1(x), . . . , ζn(x)}. The theorem is proved with д := eiθϕ.

5 A Schwarz lemma for the spectral unit ball

In this section, we sketch a proof of a Schwarz lemma for the spectral unit ball. This theorem

was formulated and proved by Bharali [Bha07]. But as the ideas fit well with the main themes

of this article, we felt it is worthwhile to sketch a slightly different proof here.

For n ∈ Z+, the spectral unit ball Ωn ⊂ Cn2 is the collection of all matrices A ∈ Mn(C)
(n × n complex matrices) whose spectrum σ (A) is contained in D. We have the following

Proposition 33. The set Ωn is an unbounded balanced pseudoconvex domain with Minkowski

function given by the spectral radius ρ.

Proof. That Ωn is balanced and that the spectral radius is the Minkowski function is easy to

see from the definitions. We can define the holomorphic map Ψn : Mn(C) → C
n given by

M 7→ π (σ (M)). Observe that Ψ−1
n (Gn) = Ωn which shows that Ωn is a domain of holomorphy

(from that fact that Gn is a domain of holomorphy and [Hö90, Theorem 2.5.14]). Pseudocon-

vexity of Ωn now follows from the characterization of domains of holomorphy (see [Hö90,

Section 2.6]). �

Remark 34. The above proposition shows that ρ |Ωn
is plurisubharmonic (see [JP13, Appendix

B.7.6]). This fact is usually proved in the literature using a theorem of Vesentini [Ves68].

Definition 35. Given A ∈ Mn(C), we can write its minimal polynomialMA as

MA(t) =
∑

λ∈σ (A)
(t − λ)m(λ)

.

Theminimal Blaschke product corresponding to A is defined by

BA(t) :=
∏

λ∈σ (A)⊂D

(
t − λ
1 − λt

)m(λ)
. (8)
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Using the minimal Blaschke product corresponding to A, we can construct a holomorphic

map Ã : Ωn → Ωn that takes A to 0. We define

Ã : B 7→
∏

λ∈σ (A)
(I − λB)−m(λ)(B − λI)m(λ)

,

wherem(λ) is the multiplicity of the eigenvalue λ in the minimal polynomial of A. It can be

shown that if σ (B) = {λ1, . . . , λn} then σ (Ã(B)) = {BA(λ1), . . . ,BA(λn)}. If F : D → Ωn is

holomorphic such that F (z) = A and F (w) = B then Ã ◦ F takes A to 0 and B̃ ◦ F takes B to 0.

The following result is immediate from the Schwarz lemma for balanced domains (Result 23).

Result 36 (Bharali, Theorem 1.5 of [Bha07]). Let f : D → Ωn be holomorphic. Then for

z,w ∈ D, we have

max




max
λ∈σ (f (w))

∏

µ∈σ (f (z))
MD(µ, λ)m(µ)

, max
µ∈σ (f (z))

∏

λ∈σ (f (w))
MD(µ, λ)m(λ)




≤ MD(z,w),

where m(µ) and m(λ) denote the multiplicity of the eigenvalues µ and λ in Mf (z) and Mf (B),
respectively.
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