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STRONG BOUNDED VARIATION ESTIMATES FOR THE

MULTI-DIMENSIONAL FINITE VOLUME APPROXIMATION OF SCALAR

CONSERVATION LAWS AND APPLICATION TO A TUMOUR GROWTH

MODEL

Gopikrishnan Chirappurathu Remesan*

Abstract. A uniform bounded variation estimate for finite volume approximations of the nonlinear
scalar conservation law ∂tα + div(uf(α)) = 0 in two and three spatial dimensions with an initial data
of bounded variation is established. We assume that the divergence of the velocity div(u) is of bounded
variation instead of the classical assumption that div(u) is zero. The finite volume schemes analysed
in this article are set on nonuniform Cartesian grids. A uniform bounded variation estimate for finite
volume solutions of the conservation law ∂tα + div(F (t,x, α)) = 0, where divxF ̸= 0 on nonuniform
Cartesian grids is also proved. Such an estimate provides compactness for finite volume approximations
in Lp spaces, which is essential to prove the existence of a solution for a partial differential equation
with nonlinear terms in α, when the uniqueness of the solution is not available. This application is
demonstrated by establishing the existence of a weak solution for a model that describes the evolution
of initial stages of breast cancer proposed by Franks et al. [J. Math. Biol. 47 (2003) 424–452]. The
model consists of four coupled variables: tumour cell concentration, tumour cell velocity–pressure, and
nutrient concentration, which are governed by a hyperbolic conservation law, viscous Stokes system,
and Poisson equation, respectively. Results from numerical tests are provided and they complement
theoretical findings.
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1. Introduction

Consider the following scalar hyperbolic conservation law in R
2 with a homogeneous source term and an

initial data of bounded variation (BV):

𝜕𝑡𝛼+ div (u𝑓(𝛼)) = 0 in Ω𝑇 and
𝛼(0, ·) = 𝛼0 in Ω,

}︂
(1.1)

where 𝛼 is the unknown, 𝛼0 : Ω → R is known a priori function of BV, u = (𝑢, 𝑣) is the advecting velocity,
Ω𝑇 := (0, 𝑇 ) × Ω, Ω := 𝐼 × 𝐽 , 𝐼 := (𝑎, 𝑏) ⊂ R and 𝐽 := (𝑐, 𝑑) ⊂ R are intervals. For technical simplicity assume
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Figure 1. Advancing tumour in the duct (0, 1) × (0, ℓ).

that u = 0 on 𝜕Ω. The function 𝑓 quantifies the amount of material advected with the velocity u and is called
the flux function. We assume that 𝑓 is Lipschitz continuous with Lipschitz constant, Lip(𝑓), which is a classical
assumption in literature [14]. Finite volume methods are extensively used to discretise and compute numerical
solutions to (1.1) since such schemes respect the conservation of mass property associated with the underlying
partial differential equation (PDE).

Motivation

Conservation laws of the form (1.1) are crucial in practical applications. Usually they model density or
concentration of a conserved quantity in a coupled system, where the conservation law is strongly entangled
with the equation that governs the advecting velocity, and with other governing equations, if present.

A wide class tumour growth models based on multiphase mixture theory [3] contain a coupled system of a
conserved variable and corresponding advecting velocity. For instance consider a model developed by Franks
et al. [15] that depicts ductal carcinoma in situ – the initial stage of breast cancer. In two spatial dimensions,
the model describes the evolution of an advancing tissue in a cylindrical domain with rigid walls, see Figure 1.

To keep the discussion simple, we consider the model with simplified kinetics, wherein the viscosity, denoted
by 𝜇, inside and outside the tumour is assumed to be uniform and divergence of the velocity field is assumed
to depend only on nutrient concentration. The domain of tumour growth is denoted by Ω = {x := (𝑥, 𝑦) : 0 ≤
𝑥 ≤ 1, 0 ≤ 𝑦 ≤ ℓ}. Here, 𝑥 is radial distance, 𝑦 is the axial distance, and ℓ > 2 is the duct length. For 𝑇 < ∞,
time-space domain is denoted by Ω𝑇 = (0, 𝑇 ) × Ω and 𝑡 ∈ (0, 𝑇 ) is the time variable. The model variables are
concentration of the tumour cells 𝛼(𝑡,x), velocity of the tumour cells u(𝑡,x) := (𝑢(𝑡,x), 𝑣(𝑡,x)), pressure inside
the tumour 𝑝(𝑡,x), and nutrient concentration 𝑐(𝑡,x). The model seeks a four tuple (𝛼, 𝑝,u, 𝑐) such that, in Ω𝑇

it holds

tumour cell concetration

{︂
𝜕𝛼

𝜕𝑡
+ div(u𝛼) = 𝛾𝛼(1 − 𝑐), (1.2a)

velocity − pressure system

⎧
⎨
⎩

−𝜇
(︂

∆u+
1

3
∇(div(u))

)︂
+ ∇𝑝 = 0,

div(u) = 𝛾(1 − 𝑐), and
(1.2b)

nutrient concentration
{︀
−∆𝑐 = 𝑄𝛼, (1.2c)

with appropriate boundary conditions. In (1.2a), 𝛾 is a positive constant that controls the rate of cell division
and in (1.2c), 𝑄 is a positive constant that controls the nutrient intake by the cells.
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Another example is the two-phase tumour spheroid growth problem [12], where velocity of the tumour cells
u is governed by

−div
(︀
𝜇𝛼(∇u+ (∇u)𝑇 ) + 𝜆𝛼div(u)I2

)︀
+ ∇𝑝 = −∇

(︂
(𝛼− 𝛼∗)+

(1 − 𝛼)2

)︂
and

−div

(︂
1 − 𝛼

𝑘𝛼
∇𝑝
)︂

+ div(u) = 0,

⎫
⎪⎪⎬
⎪⎪⎭

(1.3)

where 𝜇 and 𝜆 are the viscosity coefficients, 𝑘 is the traction coefficient, 𝛼∗ is a positive parameter that controls
intra-cellular attraction, 𝑝 is the pressure, I2 is the 2 × 2 identity tensor, and 𝛼 evolves with respect to (1.1)
with a nonlinear source function in 𝛼.

To show that a possible limit of discrete solutions obtained from a finite volume scheme applied to (1.1)
or (1.2a) satisfies (1.2) or (1.3), respectively and hence to prove the existence of a solution, we need to establish
that the discrete solutions converge to the limit in strong 𝐿𝑝-norm, where 𝑝 ≥ 1. Otherwise, it becomes challeng-
ing to apply pass to the limit arguments on functions of 𝛼 appearing in (1.2) and (1.3). A feasible way to obtain
strong 𝐿𝑝-norm convergence is to show that the discrete solutions have uniform BV and invoke Helly’s selection
theorem (Thm. A.2i) to extract a strongly converging subsequence. Moreover, the velocity vector field u is not
necessarily divergence-free of which (1.2b) is an example. The divergence of the velocity field manifests as a
source term in (1.1). Hence, while attempting to obtain a uniform BV estimate on discrete solutions of (1.1),
we need to account for velocity vector fields with nonzero divergence also.

Literature

Total variation properties of weak and entropy solutions of (1.1) are rather classical results. Conway and
Smoller [7] studied conservation laws of the form

𝜕𝑡𝛼+
𝑑∑︁

𝑗=1

𝜕𝑥j
𝑓𝑗(𝛼) = 0, (1.4)

where BV initial data and (𝑓𝑗)𝑗=1,...,𝑑 are assumed to be in C 1(R; R). They studied a finite difference scheme on
a uniform Cartesian grid (see Def. 2.2) and showed that discrete solutions have uniform BV. The limit solution
obtained from a strongly convergent subsequence is then showed to be a weak solution and is a function with BV.
Kuznetsov [18] provided early results on BV properties of entropy solutions of (1.4). This article [18] establishes
that the BV seminorm of the entropy solution to (1.4) at any time is bounded by the BV seminorm of the initial
data. Crandall and Majda [8] considered monotone finite difference approximations of (1.4) with BV initial
data on uniform Cartesian meshes and established uniform BV estimate for discrete solutions. This estimate
is used to prove the convergence of the discrete solutions to the unique entropy solution in strong 𝐿1-norm
and to prove that the entropy solution also inherits the BV property of the discrete solutions. Later, this work
was extended to nonuniform Cartesian meshes by Sanders [22]. Merlet and Vovelle [20, 21] considered linear
advection equations of the form (1.1) with 𝑓(𝛼) = 𝛼, u ∈ 𝑊 1,∞(R+ × R

𝑑; R𝑑), and div(u(𝑡, ·)) = 0. The BV
seminorm of the unique weak solution of this problem, constructed using the characteristic method, is bounded
and the bound depends on the BV seminorm of the initial data. However, discrete solutions corresponding to
this problem obtained by using finite volume schemes on general polygonal meshes are not proved to satisfy a
uniform BV estimate (see [21], Rem. 1.5, p. 7). In fact, to show that the finite volume solutions converge to the
entropy solution, whose existence is known a priori, it is enough to have a weak BV estimate ([5], p. 143, [14],
p. 161) of the following form

𝑁∑︁

𝑛=0

𝛿
∑︁

e

|𝑓(𝛼𝑝
e) − 𝑓(𝛼𝑛

e )|
⃒⃒
⃒⃒
ˆ

e

u(𝑡𝑛, ·) · ne d𝑠

⃒⃒
⃒⃒ ≤ Cℎ−1/2,

where 𝛿 is the temporal discretisation factor, ℎ is the spatial discretisation factor, e is an edge of a polygon 𝐾 in

the mesh, ne is the outward unit normal to e with respect to 𝐾, 𝛼
(𝑝/𝑛)
e are the values of a discrete solution on
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the neighbouring polygons of e. The weak BV estimate ensures convergence in nonlinear weak-* sense (see [14],
Def. 6.3, p. 100) to a Young measure, called a process solution. It can be established that the process solution
is indeed a function by proving the uniqueness of the process solution. In this scenario, the nonlinear weak-*
convergence actually becomes strong 𝐿𝑝 convergence (see [14], Thms. 6.4 and 6.5, p. 187, 188). Uniqueness of
the process solution is crucial in this technique and hence, it is difficult to use it in the case of coupled systems
like (1.2) and (1.3). The relationship between process solution and function solution is not very clear in this case
and an a priori compactness result like a uniform BV estimate is necessary to obtain strong 𝐿𝑝 convergence.

A recent uniform BV estimate on finite volume solutions of conservation laws of the form (1.4) on uniform
Cartesian grid is obtained by Karlsen and Towers [17]. They consider (1.4) with an auxiliary boundary condition
f · nΩ = 0, where nΩ is the outward unit normal to 𝜕Ω. Chainais-Hillairet [4] also provides a uniform BV
estimate on finite volume solutions of fully nonlinear conservations laws on uniform square Cartesian grids (see
subsection 4 for details).

The convergence of finite volume solutions, existence of an entropy solution, and subsequent error estimates
on unstructured polygonal grids in R

𝑑 (𝑑 ≥ 2) presented by Eymard et al. [14] is based on weak BV estimates.
It is mentioned that these weak BV estimates may be extended to the case with div(u) ̸= 0. The natural
extension of the theory proposed by Eymard et al. is a proof of strong BV estimate for finite volume solutions
on unstructured polygonal meshes in multidimensions. This proof is a challenging task at the current state of
the art of analysis and this is supported by the counter example presented by Després [9]. The next closest result
is the strong BV estimate on nonuniform Cartesian meshes presented in this article and thus complements the
theory in [14]. Moreover, this work aids to prove existence of weak solutions of complex coupled problems with
nonlinear conservation laws, wherein a strong BV estimate is crucial to establish the convergence of nonlinear
terms.

It is also mentioned in [14], p. 154 that a strong BV estimate in higher dimensional Cartesian grids reduces
to a one dimensional discretisation. However, the corresponding proofs were not provided. This result is a
consequence of the strong BV estimate on nonuniform Cartesian grids (which incur severe technical difficulties)
in two and three dimensions presented in this article.

Contributions

In all of the works reviewed above, either the advecting velocity vector is component-wise constant (see (1.4))
or the advecting velocity is assumed to be divergence-free. However, these may not be realistic assumptions in
applications as evident from (1.2) and (1.3). While discretising physical models, it is imperative to refine the
regions where discontinuities of the solution are expected and to retain other regions relatively coarse so that
the scheme remains economical. A uniform BV estimate is crucial in enabling the nonlinear terms to converge
and hence to prove existence of a solution.

The main contributions of this article are stated below.

– In the conservation law (1.1), the assumption that div(u) = 0 is relaxed.
– A finite volume scheme on nonuniform Cartesian grids in two and three spatial dimensions is considered,

and the analysis holds in general for the class of monotone numerical fluxes. The nonuniformity of Cartesian
grid can be used to refine the mesh adaptively and economically.

– Finite volume solutions satisfy a uniform BV estimate in space and time and this result is extended to the
case of fully nonlinear conservation laws analysed by Chainais-Hillairet [4].

– The existence of a weak solution for (1.2) is shown by utilising the BV estimates on Cartesian grids. Compact-
ness results rendered by uniform BV present a convergent subsequence out of a family of discrete solutions
constructed by applying a finite volume scheme to (1.2a), whose limit is shown to be a weak solution of (1.2a).

The uniform BV estimate in space and time for linear and nonlinear conservation laws is obtained by com-
puting the variation of the discrete solution along orthogonal Cartesian axes separately. This method has two
major difficulties. Firstly, the term 𝛼 div(u) serves as an additional source function since divergence of the
velocity field is not zero. The difference of 𝛼 div(u) at time step 𝑡𝑛+1 across neighbouring control volumes is
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estimated in terms of the BV seminorm of div(u) and 𝐿∞ bound of 𝛼 at time step 𝑡𝑛. Secondly, while estimating
the difference of the discrete solution across two control volumes in 𝑥 direction, we obtain terms that contain
differences of numerical fluxes across the other orthogonal direction and vice-versa. This is a potential obstacle
to the standard technique of writing the variation of the discrete solution at 𝑡𝑛+1 across two control volumes
as a convex linear combination of variations of the discrete solutions across neighbouring control volumes at
𝑡𝑛. We introduce the idea of an intermediate nodal (edge) flux in two (three) spatial dimensions, which is the
numerical flux across control volumes sharing only a single vertex (edge), to transform the differences along 𝑦
and 𝑧 directions into that along 𝑥 direction and vice-versa. This helps to obtain a relation of the form

BV(𝑛+ 1) ≤ BV(𝑛) +

ˆ 𝑡n+1

𝑡n

𝐴(𝑡) d𝑡, (1.5)

where BV(𝑛) is the BV seminorm of the discrete solution at 𝑡𝑛, and 𝐴(𝑡) depends on BV seminorm of div(u) and
‖∇u(𝑡, ·)‖𝐿∞(Ω). Finally, an application of induction on (1.5) yields the BV estimate on the discrete solution.

Organisation

This article is organised in the following fashion. In Section 2, we present the necessary notations, assumptions,
function spaces, and the finite volume scheme. The main results of this article are also presented in Section 2.
The uniform BV estimate of finite volume solutions of (1.1) is presented in Section 3. In Section 4, we show
the uniform BV estimate for conservation laws with fully nonlinear flux. The numerical results and discussion
are presented in Section 5. The semi-discrete analysis that proves the existence of a weak solution of (1.2) is
conducted in Section 6. The conclusions are presented in Section 7.

2. Main results

Three main results are presented in this article. The first two results establish uniform bounded variation
estimates in space and time for

– conservation laws in two spatial dimensions of the form 𝜕𝑡𝛼+ div(u𝑓(𝛼)) = 0 in Theorem 2.4.
– conservation laws in two spatial dimensions with fully nonlinear flux of the form 𝜕𝑡𝛼 + div(F (𝑡,x, 𝛼)) = 0

in Theorem 4.1.

The third main result, see Theorem 6.10, presented in Section 6 applies Theorem 2.4 to establish the existence
of a weak solution to the practical problem of interest (1.2). The strong BV estimates in three spatial dimensions
is obtained by using analogues techniques in the two dimensional setting and hence a detailed proof is omitted,
see Remark 4.3 also.

2.1. Preliminiaries

Definition 2.1. A function 𝛽 ∈ 𝐿1(𝒜), where 𝒜 ⊂ R
𝑑, 𝑑 ≥ 1 is of BV if |𝛽|BVx(A) <∞, where

|𝛽|BVx(A) := sup

{︂
ˆ

A

𝛽 div(ϕ) dx : ϕ ∈ C
1
𝑐 (𝒜; R𝑑), |ϕ|𝐿∞(A) ≤ 1

}︂
.

The space BVx(𝒜) is the vector space of functions 𝛽 ∈ 𝐿1(𝒜) with BV. Recall that in this article Ω𝑇 =
(0, 𝑇 ) × Ω, where Ω = (𝑎, 𝑏) × (𝑐, 𝑑). Then, define the following BV seminorms for a function 𝛽 : Ω𝑇 → R:

|𝛽(𝑡, ·)|𝐿1
y𝐵𝑉x

:=

ˆ

J

|𝛽(𝑡, ·, 𝑦)|𝐵𝑉x(I) d𝑦, |𝛽(𝑡, ·)|𝐿1
x𝐵𝑉y

:=

ˆ

I

|𝛽(𝑡, 𝑥, ·)|𝐵𝑉y(J) d𝑥,

|𝛽(𝑡, ·)|𝐵𝑉x,y
:= |𝛽(𝑡, ·)|𝐿1

y𝐵𝑉x
+ |𝛽(𝑡, ·)|𝐿1

x𝐵𝑉y
,

|𝛽|𝐿1
t 𝐵𝑉x,y

:=

ˆ 𝑇

0

|𝛽(𝑡, ·)|𝐵𝑉x,y
d𝑡, |𝛽|𝐿1

x,y𝐵𝑉t
:=

ˆ

𝛺

|𝛽(·, 𝑥, 𝑦)|𝐵𝑉t(0,𝑇 ) d𝑥d𝑦, and
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Figure 2. Rectangular grid and locations of the velocities and discrete unknowns 𝛼𝑛
𝑖,𝑗 .

|𝛽|𝐵𝑉x,y,t
:= |𝛽|𝐿1

x,y𝐵𝑉t
+ |𝛽|𝐿1

t 𝐵𝑉x,y
. (2.1)

Also, define the following norms for a function 𝑣 : 𝑋𝑇 → R
𝑑 (𝑑 ≥ 1), where 𝑋𝑇 := (0, 𝑇 ) ×𝑋:

‖𝑣‖𝐿1
t 𝐿∞(𝑋T ) :=

ˆ 𝑇

0

‖𝑣(𝑡, ·)‖𝐿∞(𝑋) d𝑡 and ‖𝑣‖𝐿∞

t 𝐿1(𝑋T ) := sup
0<𝑡<𝑇

‖𝑣(𝑡, ·)‖𝐿1(𝑋).

For a function 𝛽 : (𝑎, 𝑏) → R, define the total variation by T · V·(𝛽) := sup𝑃

∑︀𝐼
𝑖=0 |𝛽(𝑥𝑖+1) − 𝛽(𝑥𝑖)|, where

𝑃 := {𝑎 = 𝑥0, . . . , 𝑥𝐼+1 = 𝑏} is a partition of (𝑎, 𝑏). It is a classical result that |𝛽|BVx(𝑎,𝑏) = T · V·(𝛽) ([16],
Appendix A).

Definition 2.2 (Two dimensional admissible grid). Let 𝑋𝑘 :=
{︀
𝑥−1/2, . . . , 𝑥𝐼+1/2

}︀
and 𝑌ℎ :={︀

𝑦−1/2, . . . , 𝑦𝐽+1/2

}︀
, where 𝑥−1/2 = 𝑎, 𝑥𝐼+1/2 = 𝑏, 𝑦−1/2 = 𝑐, 𝑦𝐽+1/2 = 𝑑, 𝑘𝑖 = 𝑥𝑖+1/2 − 𝑥𝑖−1/2, ℎ𝑗 =

𝑦𝑗+1 − 𝑦𝑗−1/2, ℎ = max𝑖 ℎ𝑖, and 𝑘 = max𝑗 𝑘𝑗 . The Cartesian grid 𝑋𝑘 × 𝑌ℎ is said to be a two dimensional

admissible grid if for a fixed constant ̃︀𝑐 > 0, it holds that (̃︀𝑐)−1 ≤ ℎj

𝑘i
≤ ̃︀𝑐 ∀𝑖, 𝑗. If 𝑘𝑖 = 𝑘 ∀ 𝑖 and ℎ𝑗 = ℎ ∀ 𝑗,

then 𝑋𝑘 × 𝑌ℎ is called a uniform Cartesian grid and otherwise a nonuniform Cartesian grid, see Figure 2.

Assume that (AS.1)–(AS.3) below hold.

(AS.1) The flux 𝑓 : R → R and the numerical flux 𝑔 : R
2 → R are Lipschitz continuous with Lipschitz constants

Lip(𝑓) and Lip(𝑔), respectively.
(AS.2) The numerical flux 𝑔 is monotonically nondecreasing in the first variable and nonincreasing in the second

variable, and satisfies 𝑔(𝑎, 𝑎) = 𝑓(𝑎) ∀𝑎 ∈ R.
(AS.3) There exists a constant C ≥ 0 such that

max
(︁
‖u‖𝐿1

t 𝐿∞(ΩT ), ‖∇u‖𝐿1
t 𝐿∞(ΩT ), |div(u)|𝐿1

tBVx,y

)︁
≤ C <∞.

2.2. Presentation of the numerical scheme

Define the spatial discretisation factor ℎmax by ℎmax = max𝑖,𝑗 {𝑘𝑖, ℎ𝑗}, which quantifies the size of the
Cartesian grid 𝑋𝑘 × 𝑌ℎ. Let T𝛿 defined by T𝛿 := {𝑡0, . . . , 𝑇𝑁} be a discretisation of (0, 𝑇 ), where 𝑡0 = 0 and
𝑡𝑁 = 𝑇 . Define the temporal discretisation factor by 𝛿 = max𝑛 𝛿𝑛, where 𝛿𝑛 = 𝑡𝑛+1−𝑡𝑛. For technical simplicity
a uniform temporal discretisation is considered, wherein 𝛿𝑛 = 𝛿 ∀𝑛. However, note that the results in this article
hold with a nonuniform temporal discretisation also.
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Integrate (1.1) on the time-space control volume (𝑡𝑛+1, 𝑡𝑛) × 𝐾𝑖𝑗 , where 𝐾𝑖𝑗 = (𝑥𝑖−1/2, 𝑥𝑖+1/2) ×
(𝑦𝑗−1/2, 𝑦𝑗+1/2) and apply the divergence theorem to obtain

0 =

ˆ 𝑡n+1

𝑡n

ˆ

𝐾ij

𝜕𝑡𝛼 dxd𝑡+

ˆ 𝑡n+1

𝑡n

ˆ

𝜕𝐾ij

𝑓(𝛼)(𝑢, 𝑣) · n𝑖𝑗 d𝑠d𝑡 =: 𝐼1 + 𝐼2, (2.2)

where n𝑖𝑗 is the outward unit normal to 𝜕𝐾𝑖𝑗 and u = (𝑢, 𝑣). Replace 𝐼1 by the difference for-
mula 𝑘𝑖ℎ𝑗

(︀
𝛼𝑛+1

𝑖,𝑗 − 𝛼𝑛
𝑖,𝑗

)︀
. Term 𝐼2 in (2.2) is approximated by the numerical flux 𝑔 : R

2 → R as

𝛿ℎ𝑗

(︁
𝐹𝑛

𝑖+1/2,𝑗 − 𝐹𝑛
𝑖−1/2,𝑗

)︁
+ 𝛿𝑘𝑖

(︁
𝐺𝑛

𝑖,𝑗+1/2 −𝐺𝑛
𝑖,𝑗−1/2

)︁
, where

𝐹𝑛
𝑖−1/2,𝑗 :=

(︁
𝑢𝑛 +

𝑖−1/2,𝑗𝑔
(︀
𝛼𝑛

𝑖−1,𝑗 , 𝛼
𝑛
𝑖,𝑗

)︀
− 𝑢𝑛−

𝑖−1/2,𝑗𝑔
(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗

)︀)︁
,

𝐺𝑛
𝑖,𝑗−1/2 :=

(︁
𝑣𝑛+

𝑖,𝑗−1/2𝑔
(︀
𝛼𝑛

𝑖,𝑗−1, 𝛼
𝑛
𝑖,𝑗

)︀
− 𝑣𝑛−

𝑖,𝑗−1/2𝑔
(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗−1

)︀)︁
, (2.3)

𝑎+ = max(𝑎, 0), and 𝑎− = −min(𝑎, 0) for 𝑎 ∈ R,

𝑢𝑛
𝑖−1/2,𝑗 =

 𝑡n+1

𝑡n

 𝑦j+1/2

𝑦j−1/2

𝑢
(︀
𝑡, 𝑥𝑖−1/2, 𝑠

)︀
d𝑠d𝑡 and 𝑣𝑛

𝑖,𝑗−1/2 =

 𝑡n+1

𝑡n

 𝑥i+1/2

𝑥i−1/2

𝑣
(︀
𝑡, 𝑠, 𝑦𝑗−1/2

)︀
d𝑠d𝑡.

Locations of the discrete unknowns 𝛼𝑛
𝑖,𝑗 , velocities 𝑢𝑖−1/2,𝑗 and 𝑣𝑖,𝑗−1/2 in a two dimensional admissible grid is

shown in Figure 2. A substitution of approximations of 𝐼1 and 𝐼2 in (2.2) leads to

𝛼𝑛+1
𝑖,𝑗 = 𝛼𝑛

𝑖,𝑗 − 𝜇𝑖

(︁
𝐹𝑛

𝑖+1/2,𝑗 − 𝐹𝑛
𝑖−1/2,𝑗

)︁
− 𝜆𝑗

(︁
𝐺𝑛

𝑖,𝑗+1/2 −𝐺𝑛
𝑖,𝑗−1/2

)︁
, (2.4a)

where 𝜇𝑖 = 𝛿/𝑘𝑖 and 𝜆𝑗 = 𝛿/ℎ𝑗 . We set the discrete initial data as follows

𝛼0
𝑖,𝑗 :=

 

𝐾i,j

𝛼0(x) dx. (2.4b)

The terms 𝐹𝑛
𝑖,𝑗 and 𝐺𝑛

𝑖,𝑗 can be expressed as, for 𝑠 ∈ {−1, 1}

𝐹𝑛
𝑖+𝑠/2,𝑗 = 𝑀𝑥

𝑖+𝑠/2,𝑗

[︂
(1 − 𝑠)

2

(︀
𝛼𝑛

𝑖−1,𝑗 − 𝛼𝑛
𝑖,𝑗

)︀
+

(1 + 𝑠)

2

(︀
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖+1,𝑗

)︀]︂
(2.5a)

+ 𝑢𝑛
𝑖+𝑠/2,𝑗𝑓(𝛼𝑛

𝑖,𝑗) and

𝐺𝑛
𝑖,𝑗+𝑠/2 = 𝑀𝑦

𝑖,𝑗+𝑠/2

[︂
(1 − 𝑠)

2

(︀
𝛼𝑛

𝑖,𝑗−1 − 𝛼𝑛
𝑖,𝑗

)︀
+

(1 + 𝑠)

2

(︀
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖,𝑗+1

)︀]︂
(2.5b)

+ 𝑣𝑛
𝑖,𝑗+𝑠/2𝑓(𝛼𝑛

𝑖,𝑗),

where

𝑀𝑥
𝑖−1/2,𝑗 :=

[︁
𝑢𝑛 +

𝑖−1/2,𝑗 𝐷
𝑛
𝑖,𝑗

(︀
𝛼𝑛

𝑖−1,𝑗 , 𝛼
𝑛
𝑖,𝑗

)︀
+ 𝑢𝑛−

𝑖−1/2,𝑗 𝐷
𝑛
𝑖,𝑗

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗

)︀]︁
,

𝑀𝑦
𝑖,𝑗−1/2 :=

[︁
𝑣𝑛 +

𝑖,𝑗−1/2𝐷
𝑛
𝑖,𝑗

(︀
𝛼𝑛

𝑖,𝑗−1, 𝛼
𝑛
𝑖,𝑗

)︀
+ 𝑣𝑛−

𝑖,𝑗−1/2𝐷
𝑛
𝑖,𝑗

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗−1

)︀]︁
,

and the difference quotient 𝐷𝑛
𝑖,𝑗 : R

2 → R is defined by

𝐷𝑛
𝑖,𝑗(𝑎, 𝑏) =

⎧
⎨
⎩

𝑔(𝑎, 𝑏) − 𝑔
(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗

)︀

𝑎− 𝑏
if 𝑎 ̸= 𝑏, and

0 if 𝑎 = 𝑏.
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Observe that 𝐷𝑛
𝑖,𝑗

(︀
𝛼𝑛

𝑖−1,𝑗 , 𝛼
𝑛
𝑖,𝑗

)︀
, 𝐷𝑛

𝑖,𝑗

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗

)︀
, 𝐷𝑛

𝑖,𝑗

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗−1

)︀
, and 𝐷𝑛

𝑖,𝑗

(︀
𝛼𝑛

𝑖,𝑗−1, 𝛼
𝑛
𝑖,𝑗

)︀
, (hence, 𝑀𝑥

𝑖−1/2,𝑗

and 𝑀𝑦
𝑖,𝑗−1/2) are nonnegative due to the monotonicity of 𝑔. Use (2.5a) and (2.5b) to transform the right hand

side of (2.4a) into a convex linear combination of the terms 𝛼𝑛
𝑙,𝑚, where (𝑙,𝑚) ∈ {(𝑖, 𝑗), (𝑖−1, 𝑗), (𝑖+1, 𝑗), (𝑖, 𝑗+1),

(𝑖, 𝑗 − 1)}, and this yields an alternate form of the discrete scheme (2.4a)

𝛼𝑛+1
𝑖,𝑗 = 𝛼𝑛

𝑖,𝑗

(︁
1 − 𝜇𝑖𝑀

𝑥
𝑖+1/2,𝑗 − 𝜆𝑗𝑀

𝑦
𝑖,𝑗+1/2 − 𝜇𝑖𝑀

𝑥
𝑖−1/2,𝑗 − 𝜆𝑗𝑀

𝑦
𝑖,𝑗−1/2

)︁

+ 𝛼𝑛
𝑖+1,𝑗𝜇𝑖𝑀

𝑥
𝑖+1/2,𝑗 + 𝛼𝑛

𝑖,𝑗+1𝜆𝑗𝑀
𝑦
𝑖,𝑗+1/2 + 𝛼𝑛

𝑖−1,𝑗𝜇𝑖𝑀
𝑥
𝑖−1/2,𝑗 + 𝛼𝑛

𝑖,𝑗−1𝜆𝑗𝑀
𝑦
𝑖,𝑗−1/2

− 𝑓
(︀
𝛼𝑛

𝑖,𝑗

)︀
(︃
ˆ 𝑡n+1

𝑡n

 

𝐾i,j

div(u)(𝑡,x) d𝑡dx

)︃
. (2.6)

Definition 2.3 (Time-reconstruct). For a sequence of functions (𝑓𝑛){𝑛≥0}, where 𝑓𝑛 : 𝑋 → R, define the
corresponding time-space reconstruct 𝑓ℎ,𝛿 : (0, 𝑇 ) ×𝑋 → R by, for every 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1), 𝑓(𝑡, ·) := 𝑓𝑛(·).

The function 𝛼ℎ,𝛿 : Ω𝑇 → R is the time-space reconstruct corresponding to the sequence of functions
(𝛼𝑛

ℎ){𝑛≥0}, where 𝛼𝑛
ℎ(x) := 𝛼𝑛

𝑖,𝑗 on 𝐾𝑖,𝑗 .

Theorem 2.4 (Bounded variation). Let 𝑋𝑘×𝑌ℎ be a two dimensional admissible grid, and assumptions (AS.1)–
(AS.3) and the Courant–Friedrichs–Lewy (CFL) condition 4𝛿max𝑖,𝑗(

1
𝑘i

+ 1
ℎj

)Lip(𝑔)‖u‖𝐿∞(ΩT ) ≤ 1 hold. If 𝛼0 ∈
𝐿∞(Ω) ∩ BVx(Ω), then 𝛼ℎ,𝛿 satisfies |𝛼ℎ,𝛿|BVx,y,t

≤ CBV, where CBV depends on 𝑇 , 𝛼0, 𝑓 , 𝑔, ‖∇u‖𝐿1
t 𝐿∞(ΩT ),

and |div(u)|𝐿1
tBVx,y

.

Remark 2.5 (Boundedness constant CBV). The exact dependency of CBV on the factors 𝑇 , 𝛼0, and Lipschitz
continuity of fluxes is obtained from the proof of Propositions 3.2 and 3.4. The final expression for CBV is
described by

CBV ≤ 𝑇B𝑢B𝛼,𝑢

(︃
1 + 4Lip(𝑔)

ˆ 𝑇

0

‖∇u‖𝐿∞(Ω) d𝑡

)︃
+ (Lip(𝑓)𝛼𝑀 + 𝑓0)‖div(u)‖𝐿1(ΩT ),

where C := max (Lip(𝑓)𝛼𝑀 + 𝑓0, 3Lip(𝑓) + 4Lip(𝑔)(̃︀𝑐+ 1) + 1), Bu := exp
(︁
C ‖∇u‖𝐿1

t 𝐿∞(ΩT )

)︁
, and B𝛼,u :=

|𝛼0|BVx,y
+ C ‖div(u)‖𝐿1

tBVx,y
. However, the precise form of CBV has little impact on compactness arguments

used to extract a strongly convergent subsequence from the family of time-space functions {𝛼ℎ,𝛿} – for this
purpose it is sufficient that |𝛼ℎ,𝛿|BVx,y,t

is bounded by a global constant independent of the discretisation
factors.

Assumptions (AS.1), (AS.2), and boundedness of ‖u‖𝐿1
t 𝐿∞(ΩT ) described by (AS.3) are classical in the litera-

ture (see [14], p. 153, and [4], p. 130 for more details). The crucial assumptions of Theorem 2.4 are the bounded-
ness of (a) ‖∇u‖𝐿1

t 𝐿∞(ΩT ) and (b) |div(u)|𝐿1
tBVx,y

described by (AS.3). Condition (a) is not unexpected since a
conventional assumption in estimating BV seminorm of finite volume approximations of nonlinear conservation
laws of the form (1.1) is that u ∈ C 1(R𝑑 ×R

+) [4,14], which yields (a) on compact subsets of R
𝑑 ×R

+. Though
(b) apparently seems to be restrictive, it is pivotal in bounding the difference of div(u) between two control
volumes (see (3.15)). Indeed, we can relax this assumption to div(u) ∈ 𝐿1

𝑡𝐿
∞(Ω𝑇 ), which is the formally correct

choice and is used in the seminal work [10] by DiPerna and Lions. However, with this less restrictive assump-
tion, Proposition II.1 in [10] only guarantees the existence of a weak solution 𝛼 ∈ 𝐿∞

𝑡 𝐿
1(Ω𝑇 ). Therefore, (b) is

justified for establishing a stronger convergence of the finite volume solutions and the higher BV regularity of
the limiting solution.
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3. Proof of Theorem 2.4

We let the hypotheses of Theorem 2.4 to hold throughout the sequel of this article and recall that 𝛼ℎ,𝛿 is the
time-reconstruct in the sense of Definition 2.3. The proof of Theorem 2.4 is accomplished through three steps:
establish the

– boundedness of 𝛼ℎ,𝛿 in Proposition 3.1,
– spatial BV estimate of 𝛼ℎ,𝛿 in Proposition 3.2, and
– temporal BV estimate of 𝛼ℎ,𝛿 in Proposition 3.4.

Proposition 3.1 (Boundedness). The function 𝛼ℎ,𝛿 satisfies, for every 0 ≤ 𝑡 ≤ 𝑇 ,

|𝛼ℎ,𝛿(𝑡, ·)|𝐿∞(Ω) ≤ B𝑓,u

(︁
𝑎0 + 𝑓0‖div(u)‖𝐿1

t 𝐿∞(ΩT )

)︁
, (3.1)

where B𝑓,u := exp
(︁
Lip(𝑓)‖div(u)‖𝐿1

t 𝐿∞(ΩT )

)︁
, 𝑎0 = ‖𝛼0‖𝐿∞(Ω), and 𝑓0 = 𝑓(0).

The proof of Proposition 3.1 is based on writing 𝛼𝑛+1
𝑖,𝑗 as convex linear combination of values of 𝛼ℎ,𝛿 at the

previous time step.

Proof. The Lipschitz continuity of the function 𝑔 yields |𝑀𝑥
𝑖−1/2,𝑗 | ≤ Lip(𝑔)|𝑢𝑛

𝑖−1/2,𝑗 | and |𝑀𝑦
𝑖,𝑗−1/2| ≤

Lip(𝑔)|𝑣𝑛
𝑖,𝑗−1/2| for 𝑖 = 0, . . . , 𝐼 and 𝑗 = 0, . . . , 𝐽 . The CFL condition in Theorem 2.4 ensures that the co-

efficient of 𝛼𝑛
𝑖,𝑗 in (2.6) is nonnegative. Use the properties of convex linear combination of {𝛼𝑛

𝑙,𝑚}, where
(𝑙,𝑚) ∈ {(𝑖, 𝑗 − 1), (𝑖, 𝑗 + 1), (𝑖− 1, 𝑗), (𝑖+ 1, 𝑗)} in (2.6) and the Lipschitz continuity of 𝑓 to obtain

sup
𝑖,𝑗

⃒⃒
𝛼𝑛+1

𝑖,𝑗

⃒⃒
≤ sup

𝑖,𝑗

⃒⃒
𝛼𝑛

𝑖,𝑗

⃒⃒ [︂
1 + Lip(𝑓)

ˆ 𝑡n+1

𝑡n

‖div(u)(𝑡, ·)‖𝐿∞(Ω) d𝑡

]︂

+ 𝑓0

ˆ 𝑡n+1

𝑡n

‖div(u)(𝑡, ·)‖𝐿∞(Ω) d𝑡. (3.2)

An application of induction on (3.2) with 𝑛 as the index and (2.4b) yield (3.1). �

Proposition 3.2 (Spatial variation). The function 𝛼ℎ,𝛿 satisfies |𝛼ℎ,𝛿(𝑡, ·)|BVx,y
≤ Bu(|𝛼0|BVx,y

+

C |div(u)|𝐿1
tBVx,y

) for every 0 ≤ 𝑡 ≤ 𝑇 , where Bu := exp
(︁
C ‖∇u‖𝐿1

t 𝐿∞(ΩT )

)︁
and C is defined in Remark 2.5.

The proof of Proposition 3.2 is achieved in five intermediate steps, which are as follows.

Step 1. Write the difference 𝛼𝑛+1
𝑖,𝑗 − 𝛼𝑛+1

𝑖−1,𝑗 as 𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑖,𝑗 := 𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑖−1,𝑗 − H𝑖,𝑗 − 𝐽𝑖,𝑗 , where H𝑖,𝑗 collects the
variation of 𝛼𝑛

𝑖,𝑗 in 𝑥-direction and 𝐽𝑖,𝑗 the variation of 𝛼𝑛
𝑖,𝑗 in 𝑦-direction.

Step 2. Use the intermediate nodal fluxes (see Fig. 4) to transform the vertical differences in 𝐽𝑖,𝑗 into horizontal
differences.

Step 3. Use steps 1 and 2 to write 𝛼𝑛+1
𝑖,𝑗 − 𝛼𝑛+1

𝑖−1,𝑗 as a sum of (a) convex linear combinations of 𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑙,𝑚,
where (𝑙,𝑚) ∈ {(𝑖, 𝑗 − 1), (𝑖, 𝑗 + 1), (𝑖− 1, 𝑗), (𝑖+ 1, 𝑗)} and (b) the variation of 𝜕𝑥𝑢 and 𝜕𝑦𝑣 (recall that
u = (𝑢, 𝑣)).

Step 4. Estimate variations of 𝜕𝑥𝑢 and 𝜕𝑦𝑣 in terms of the BV seminorm of div(u).
Step 5. Combine the estimates from steps 3 and 4 to bound |𝛼ℎ,𝛿(𝑡𝑛+1, ·)|BVx,y

in terms of |𝛼ℎ,𝛿(𝑡𝑛, ·)|BVx,y

and |div(u)|𝐿1
tBVx,y

(see (3.17a)) and apply induction on 𝑛 to obtain the desired conclusion.

Proof. Step 1. Consider the difference between the scheme (2.4a) written for 𝛼𝑛+1
𝑖,𝑗 and 𝛼𝑛+1

𝑖−1,𝑗

𝛼𝑛+1
𝑖,𝑗 − 𝛼𝑛+1

𝑖−1,𝑗 = 𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑖−1,𝑗 −
[︁
𝜇𝑖

(︁
𝐹𝑛

𝑖+1/2,𝑗 − 𝐹𝑛
𝑖−1/2,𝑗

)︁
− 𝜇𝑖−1

(︁
𝐹𝑛

𝑖−1/2,𝑗 − 𝐹𝑛
𝑖−3/2,𝑗

)︁]︁
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Figure 3. Spatial locations of the numerical fluxes 𝑔+
𝑖,𝑗+1/2 and 𝑔−𝑖,𝑗+1/2.

Figure 4. Intermediate nodal flux connecting the fluxes on edges.

−
[︁
𝜆𝑗

(︁
𝐺𝑛

𝑖,𝑗+1/2 −𝐺𝑛
𝑖,𝑗−1/2

)︁
− 𝜆𝑗

(︁
𝐺𝑛

𝑖−1,𝑗+1/2 −𝐺𝑛
𝑖−1,𝑗−1/2

)︁]︁

=: 𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑖−1,𝑗 − H𝑖,𝑗 − 𝐽𝑖,𝑗 . (3.3)

The term H𝑖,𝑗 gathers the variation in the 𝑥-direction; use (2.5a) to rewrite H𝑖,𝑗 as

H𝑖,𝑗 = 𝜇𝑖𝑀
𝑥
𝑖−1/2,𝑗

(︀
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

)︀
+ 𝜇𝑖𝑀

𝑥
𝑖+1/2,𝑗

(︀
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖+1,𝑗

)︀

+ 𝜇𝑖−1𝑀
𝑥
𝑖−1/2,𝑗

(︀
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

)︀
+ 𝜇𝑖−1𝑀

𝑥
𝑖−3/2,𝑗

(︀
𝛼𝑛

𝑖−2,𝑗 − 𝛼𝑛
𝑖−1,𝑗

)︀
+𝐾𝑓

𝑖,𝑗 , (3.4a)

where

𝐾𝑓
𝑖,𝑗 := 𝑓

(︀
𝛼𝑛

𝑖,𝑗

)︀ ˆ 𝑡n+1

𝑡n

 

𝐾i,j

𝜕𝑥𝑢(𝑡,x) dxd𝑡− 𝑓(𝛼𝑛
𝑖−1,𝑗)

ˆ 𝑡n+1

𝑡n

 

𝐾i−1,j

𝜕𝑥𝑢(𝑡,x) dxd𝑡. (3.4b)

Step 2. The goal of this step is to transform the horizontal difference of variations between the vertical levels
(𝑖 − 𝑟, 𝑗 + 𝑠) and (𝑖 − 𝑟, 𝑗 − 𝑠), where (𝑟, 𝑠) ∈ {(0, 1/2), (−1,−1/2)} appearing in 𝐽𝑖,𝑗 of (3.3) so that the
resulting terms can be combined to form a convex linear combination of differences of 𝛼ℎ,𝛿(𝑡𝑛, ·) between

neighbouring rectangles. Define 𝑔+
𝑖,𝑗+1/2 := 𝑔

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗+1

)︀
and 𝑔−𝑖,𝑗+1/2 := 𝑔

(︀
𝛼𝑛

𝑖,𝑗+1, 𝛼
𝑛
𝑖,𝑗

)︀
. Since 𝑔

+/−
𝑖,𝑗+1/2

depends only on the values at the 𝑛th level throughout the proof, the dependence of 𝑔
+/−
𝑖,𝑗+1/2 on 𝑛 is not

explicitly indicated in the sequel. Use (2.3) to rewrite 𝐽𝑖,𝑗 = 𝐽+
𝑖,𝑗 − 𝐽−

𝑖,𝑗 , where

𝐽⋆
𝑖,𝑗 := 𝜆𝑗

(︁
𝑣𝑛 ⋆

𝑖,𝑗+1/2𝑔
⋆
𝑖,𝑗+1/2 − 𝑣𝑛 ⋆

𝑖,𝑗−1/2𝑔
⋆
𝑖,𝑗−1/2

)︁
− 𝜆𝑗

(︁
𝑣𝑛 ⋆

𝑖−1,𝑗+1/2𝑔
⋆
𝑖−1,𝑗+1/2 − 𝑣𝑛 ⋆

𝑖−1,𝑗−1/2𝑔
⋆
𝑖−1,𝑗−1/2

)︁



STRONG BOUNDED VARIATION ESTIMATES 1415

with ⋆ ∈ {+,−}. The numerical fluxes involved in 𝐽+
𝑖,𝑗 and 𝐽−

𝑖,𝑗 can be assigned with spatial locations as
in Figure 3(a) and 3(b). A re-grouping of 𝐽⋆

𝑖,𝑗 leads to

𝐽⋆
𝑖,𝑗 := 𝜆𝑗

(︁
𝑣𝑛 ⋆

𝑖,𝑗+1/2𝑔
⋆
𝑖,𝑗+1/2 − 𝑣𝑛 ⋆

𝑖−1,𝑗+1/2𝑔
⋆
𝑖−1,𝑗+1/2

)︁
− 𝜆𝑗

(︁
𝑣𝑛 ⋆

𝑖,𝑗−1/2𝑔
⋆
𝑖,𝑗−1/2 − 𝑣𝑛 ⋆

𝑖−1,𝑗−1/2𝑔
⋆
𝑖−1,𝑗−1/2

)︁

=: 𝜆𝑗 (T∗
1 − T

∗
2) . (3.5)

We consider horizontal difference T
+
1 = 𝑣𝑛 +

𝑖,𝑗+1/2𝑔
(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗+1

)︀
− 𝑣𝑛 +

𝑖−1,𝑗+1/2𝑔
(︀
𝛼𝑛

𝑖−1,𝑗 , 𝛼
𝑛
𝑖−1,𝑗+1

)︀
for clarity.

Grouping the terms appropriately yields

𝑣𝑛 +
𝑖,𝑗+1/2𝑔

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗+1

)︀
− 𝑣𝑛 +

𝑖−1,𝑗+1/2𝑔
(︀
𝛼𝑛

𝑖−1,𝑗 , 𝛼
𝑛
𝑖−1,𝑗+1

)︀
=
(︁
𝑣𝑛 +

𝑖,𝑗+1/2 − 𝑣𝑛 +
𝑖−1,𝑗+1/2

)︁
𝑔
(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗+1

)︀

+ 𝑣𝑛 +
𝑖−1,𝑗+1/2

(︀
𝑔
(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗+1

)︀
− 𝑔

(︀
𝛼𝑛

𝑖−1,𝑗 , 𝛼
𝑛
𝑖−1,𝑗+1

)︀)︀
.

(3.6)

Introduce an artificial nodal flux 𝑔(𝛼𝑛
𝑖−1,𝑗 , 𝛼

𝑛
𝑖,𝑗+1) arising from two diagonally opposite control volumes as

in Figure 4. The nodal flux, splitting in (3.6), and some manipulations lead to

𝐽⋆
𝑖,𝑗 = 𝜆𝑗

(︁(︁
𝑣𝑛 ⋆

𝑖,𝑗+1/2 − 𝑣𝑛 ⋆
𝑖−1,𝑗+1/2

)︁
𝑔⋆

𝑖,𝑗+1/2 −
(︁
𝑣𝑛 ⋆

𝑖,𝑗−1/2 − 𝑣𝑛 ⋆
𝑖−1,𝑗−1/2

)︁
𝑔⋆

𝑖,𝑗−1/2

)︁

+ 𝜆𝑗

[︁
𝑣𝑛 ⋆

𝑖−1,𝑗+1/2E⋆

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗 , 𝛼

𝑛
𝑖,𝑗+1

)︀ (︀
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

)︀

− 𝑣𝑛 ⋆
𝑖−1,𝑗−1/2E⋆

(︀
𝛼𝑛

𝑖,𝑗−1, 𝛼
𝑛
𝑖−1,𝑗−1, 𝛼

𝑛
𝑖,𝑗

)︀ (︀
𝛼𝑛

𝑖,𝑗−1 − 𝛼𝑛
𝑖−1,𝑗−1

)︀

+ 𝑣𝑛 ⋆
𝑖−1,𝑗+1/2E−⋆

(︀
𝛼𝑛

𝑖,𝑗+1, 𝛼
𝑛
𝑖−1,𝑗+1, 𝛼

𝑛
𝑖−1,𝑗

)︀ (︀
𝛼𝑛

𝑖,𝑗+1 − 𝛼𝑛
𝑖−1,𝑗+1

)︀

− 𝑣𝑛 ⋆
𝑖−1,𝑗−1/2E−⋆

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗 , 𝛼

𝑛
𝑖−1,𝑗−1

)︀ (︀
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

)︀]︁
, (3.7a)

where the difference quotients E∗ : R
3 → R are defined by

E⋆(𝑎, 𝑏, 𝑐) :=

⎧
⎨
⎩

(1 + ⋆)(𝑔(𝑎, 𝑐) − 𝑔(𝑏, 𝑐)) + (1 − ⋆) (𝑔(𝑐, 𝑎) − 𝑔(𝑐, 𝑏))

2(𝑎− 𝑏)
if 𝑎 ̸= 𝑏, and

0 if 𝑎 = 𝑏.
(3.7b)

Note that the sums (1 ± (±)) used in (3.7b) are understood as (1 ± (±1)). Use the identity 𝑎+ = 𝑎 + 𝑎−

to transform the differences
(︁
𝑣𝑛 +

𝑖,𝑗+1/2 − 𝑣𝑛 +
𝑖−1,𝑗+1/2

)︁
and

(︁
𝑣𝑛 +

𝑖,𝑗−1/2 − 𝑣𝑛 +
𝑖−1,𝑗−1/2

)︁
in 𝐽+

𝑖,𝑗 and combine the

resulting negative parts with the corresponding negative parts in 𝐽−
𝑖,𝑗 . This yields

(︁
𝜆𝑗

(︁
𝑣𝑛 +

𝑖,𝑗+1/2 − 𝑣𝑛 +
𝑖−1,𝑗+1/2

)︁
𝑔+

𝑖,𝑗+1/2 − 𝜆𝑗

(︁
𝑣𝑛 +

𝑖,𝑗−1/2 − 𝑣𝑛 +
𝑖−1,𝑗−1/2

)︁
𝑔+

𝑖,𝑗−1/2

)︁

−
(︁
𝜆𝑗

(︁
𝑣𝑛−

𝑖,𝑗+1/2 − 𝑣𝑛−
𝑖−1,𝑗+1/2

)︁
𝑔−𝑖,𝑗+1/2 − 𝜆𝑗

(︁
𝑣𝑛−

𝑖,𝑗−1/2 − 𝑣𝑛−
𝑖−1,𝑗−1/2

)︁
𝑔−𝑖,𝑗−1/2

)︁

=

⎛
⎜⎜⎜⎜⎝

𝑔+
𝑖,𝑗+1/2

ℎ𝑗

ˆ 𝑡n+1

𝑡n

(︃
 𝑥i+1/2

𝑥i−1/2

𝑣
(︀
𝑡, 𝑠, 𝑦𝑗+1/2

)︀
d𝑠−

 𝑥i−1/2

𝑥i−3/2

𝑣
(︀
𝑡, 𝑠, 𝑦𝑗+1/2

)︀
d𝑠

)︃
d𝑡

−
𝑔+

𝑖,𝑗−1/2

ℎ𝑗

ˆ 𝑡n+1

𝑡n

(︃
 𝑥i+1/2

𝑥i−1/2

𝑣
(︀
𝑡, 𝑠, 𝑦𝑗−1/2

)︀
d𝑠−

 𝑥i−1/2

𝑥i−3/2

𝑣
(︀
𝑡, 𝑠, 𝑦𝑗−1/2

)︀
d𝑠

)︃
d𝑡

⎞
⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=: 𝐾𝑔
𝑖,𝑗

+ 𝜆𝑗

(︁
𝑣𝑛−

𝑖,𝑗+1/2 − 𝑣𝑛−
𝑖−1,𝑗+1/2

)︁(︁
𝑔+

𝑖,𝑗+1/2 − 𝑔−𝑖,𝑗+1/2

)︁
− 𝜆𝑗

(︁
𝑣𝑛−

𝑖,𝑗−1/2 − 𝑣𝑛−
𝑖−1,𝑗−1/2

)︁(︁
𝑔+

𝑖,𝑗−1/2 − 𝑔−𝑖,𝑗−1/2

)︁
.

(3.8)
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Step 3. Combine (3.3), (3.4a), (3.7a), (3.8) and re-group the terms to obtain

𝛼𝑛+1
𝑖,𝑗 − 𝛼𝑛+1

𝑖−1,𝑗 =
(︀
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

)︀
(1 − 𝑐𝑖,𝑗) − 𝜇𝑖𝑀

𝑥
𝑖+1/2,𝑗

(︀
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖+1,𝑗

)︀
− 𝜇𝑖−1𝑀

𝑥
𝑖−3/2,𝑗

(︀
𝛼𝑛

𝑖−2,𝑗 − 𝛼𝑛
𝑖−1,𝑗

)︀

+ 𝜆𝑗

⎡
⎣
∑︁

∗∈{+,−}

(*)𝑣𝑛 ∗
𝑖−1,𝑗−1/2E∗(𝛼

𝑛
𝑖,𝑗−1, 𝛼

𝑛
𝑖−1,𝑗−1, 𝛼

𝑛
𝑖,𝑗)
(︀
𝛼𝑛

𝑖,𝑗−1 − 𝛼𝑛
𝑖−1,𝑗−1

)︀

−
∑︁

∗∈{+,−}

(*)𝑣𝑛 ∗
𝑖−1,𝑗+1/2E−∗

(︀
𝛼𝑛

𝑖,𝑗+1, 𝛼
𝑛
𝑖−1,𝑗+1, 𝛼

𝑛
𝑖−1,𝑗

)︀ (︀
𝛼𝑛

𝑖,𝑗+1 − 𝛼𝑛
𝑖−1,𝑗+1

)︀
⎤
⎦

− 𝜆𝑗

[︁(︁
𝑣𝑛−

𝑖,𝑗+1/2 − 𝑣𝑛−
𝑖−1,𝑗+1/2

)︁(︁
𝑔+

𝑖,𝑗+1/2 − 𝑔−𝑖,𝑗+1/2

)︁

+
(︁
𝑣𝑛−

𝑖,𝑗−1/2 − 𝑣𝑛−
𝑖−1,𝑗−1/2

)︁(︁
𝑔+

𝑖,𝑗−1/2 − 𝑔−𝑖,𝑗−1/2

)︁]︁
−
(︁
𝐾𝑓

𝑖,𝑗 +𝐾𝑔
𝑖,𝑗

)︁
, (3.9a)

where

𝑐𝑖,𝑗 := 𝜇𝑖𝑀
𝑥
𝑖−1/2,𝑗 + 𝜇𝑖−1𝑀

𝑥
𝑖−1/2,𝑗 + 𝜆𝑗

[︁
𝑣𝑛 +

𝑖−1,𝑗+1/2E+

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗 , 𝛼

𝑛
𝑖,𝑗+1

)︀

− 𝑣𝑛 +
𝑖−1,𝑗−1/2E−

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗 , 𝛼

𝑛
𝑖−1,𝑗−1

)︀
− 𝑣𝑛−

𝑖−1,𝑗+1/2E−

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗 , 𝛼

𝑛
𝑖,𝑗+1

)︀

+ 𝑣𝑛−
𝑖−1,𝑗−1/2E+

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗 , 𝛼

𝑛
𝑖−1,𝑗−1

)︀]︁
. (3.9b)

Note that in (3.9b) the terms E− are nonpositive and E+ are nonnegative. This fact along with the CFL
condition ensures that 1−𝑐𝑖,𝑗 is nonnegative. Take absolute value on both sides of (3.9a), multiply by ℎ𝑗 , sum
on 𝑖 = 1, . . . , 𝐼 and 𝑗 = 0, . . . , 𝐽 , and use the condition that u = 0 on 𝜕Ω to change the indices appropriately
to obtain

𝐽∑︁

𝑗=0

ℎ𝑗

𝐼∑︁

𝑖=1

|𝛼𝑛+1
𝑖,𝑗 − 𝛼𝑛+1

𝑖−1,𝑗 | ≤
𝐽∑︁

𝑗=0

ℎ𝑗

𝐼∑︁

𝑖=1

⃒⃒
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

⃒⃒
(1 − 𝑐𝑖,𝑗)

+

𝐽∑︁

𝑗=0

ℎ𝑗

[︃
𝐼∑︁

𝑖=1

𝜇𝑖−1𝑀
𝑥
𝑖−1/2,𝑗

⃒⃒
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

⃒⃒
+

𝐼∑︁

𝑖=1

𝜇𝑖𝑀
𝑥
𝑖−1/2,𝑗

⃒⃒
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

⃒⃒
]︃

+
∑︁

∗∈{+,−}

𝐽∑︁

𝑗=0

ℎ𝑗

𝐼∑︁

𝑖=1

[︁
𝜆𝑗𝑣

𝑛 ∗
𝑖−1,𝑗+1/2(*)E∗

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗 , 𝛼

𝑛
𝑖,𝑗+1

)︀ ⃒⃒
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

⃒⃒

+ 𝑣𝑛 ∗
𝑖−1,𝑗−1/2

(︀
−(*)E−∗

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗 , 𝛼

𝑛
𝑖−1,𝑗−1

)︀)︀ ⃒⃒
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

⃒⃒]︁

+

𝐽−1∑︁

𝑗=0

ℎ𝑗

𝐼∑︁

𝑖=1

𝜆𝑗

⃒⃒
⃒𝑣𝑛−

𝑖,𝑗+1/2 − 𝑣𝑛−
𝑖−1,𝑗+1

⃒⃒
⃒
⃒⃒
𝑔
(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗+1

)︀
− 𝑔

(︀
𝛼𝑛

𝑖,𝑗+1, 𝛼
𝑛
𝑖,𝑗

)︀⃒⃒

+

𝐽∑︁

𝑗=1

ℎ𝑗

𝐼∑︁

𝑖=1

𝜆𝑗

⃒⃒
⃒𝑣𝑛−

𝑖,𝑗−1/2 − 𝑣𝑛−
𝑖−1,𝑗−1/2

⃒⃒
⃒
⃒⃒
𝑔
(︀
𝛼𝑛

𝑖,𝑗−1, 𝛼
𝑛
𝑖,𝑗

)︀
− 𝑔

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗−1

)︀⃒⃒

+

𝐽∑︁

𝑗=1

ℎ𝑗

𝐼∑︁

𝑖=1

(︁⃒⃒
⃒𝐾𝑓

𝑖,𝑗 +𝐾𝑔
𝑖,𝑗

⃒⃒
⃒
)︁
. (3.10)

The term 1−𝑐𝑖,𝑗 and coefficients of |𝛼𝑛
𝑖,𝑗−𝛼𝑛

𝑖−1,𝑗 | in the second and third sum on the right hand side of (3.10)
add up to one, and this yields

𝐽∑︁

𝑗=0

ℎ𝑗

𝐼∑︁

𝑖=1

⃒⃒
𝛼𝑛+1

𝑖,𝑗 − 𝛼𝑛+1
𝑖−1,𝑗

⃒⃒
≤

𝐽∑︁

𝑗=0

ℎ𝑗

𝐼∑︁

𝑖=1

⃒⃒
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

⃒⃒



STRONG BOUNDED VARIATION ESTIMATES 1417

+

𝐽−1∑︁

𝑗=0

ℎ𝑗

𝐼∑︁

𝑖=1

𝜆𝑗

⃒⃒
⃒𝑣𝑛−

𝑖,𝑗+1/2 − 𝑣𝑛−
𝑖−1,𝑗+1/2

⃒⃒
⃒
⃒⃒
𝑔
(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗+1

)︀
− 𝑔

(︀
𝛼𝑛

𝑖,𝑗+1, 𝛼
𝑛
𝑖,𝑗

)︀⃒⃒

+

𝐽∑︁

𝑗=1

ℎ𝑗

𝐼∑︁

𝑖=1

𝜆𝑗

⃒⃒
⃒𝑣𝑛−

𝑖,𝑗−1/2 − 𝑣𝑛−
𝑖−1,𝑗−1/2

⃒⃒
⃒
⃒⃒
𝑔
(︀
𝛼𝑛

𝑖,𝑗−1, 𝛼
𝑛
𝑖,𝑗

)︀
− 𝑔

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗−1

)︀⃒⃒

+ 𝛿

𝐽∑︁

𝑗=1

ℎ𝑗

𝐼∑︁

𝑖=1

(︁⃒⃒
⃒𝐾𝑓

𝑖,𝑗 +𝐾𝑔
𝑖,𝑗

⃒⃒
⃒
)︁
. (3.11)

Use the Lipschitz continuity of the negative part 𝑎→ 𝑎− (with constant 1) and 𝑔, Lipschitz continuity of 𝑣
in the 𝑥-direction, and grid regularity condition of Definition 2.2 to obtain

𝜆𝑗

⃒⃒
⃒𝑣𝑛−

𝑖,𝑗−1/2 − 𝑣𝑛−
𝑖−1,𝑗−1/2

⃒⃒
⃒
⃒⃒
𝑔
(︀
𝛼𝑛

𝑖,𝑗−1, 𝛼
𝑛
𝑖,𝑗

)︀
− 𝑔

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗−1

)︀⃒⃒
≤ ̃︀𝑐

⃒⃒
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖,𝑗−1

⃒⃒
Lip(𝑔)

ˆ 𝑡n+1

𝑡n

‖𝜕𝑥𝑣(𝑡, ·)‖𝐿∞(Ω) d𝑡.

(3.12)

Step 4. Apply A.1i on 𝐾𝑔
𝑖,𝑗 (see (3.8)) to obtain

𝐾𝑔
𝑖,𝑗 =

𝑔+
𝑖,𝑗+1/2 − 𝑔+

𝑖,𝑗−1/2

2ℎ𝑗

[︃
ˆ 𝑡n+1

𝑡n

(︃
 𝑥i+1/2

𝑥i−1/2

𝑣(𝑡, 𝑠, 𝑦𝑗+1/2) d𝑠−
 𝑥i−1/2

𝑥i−3/2

𝑣(𝑡, 𝑠, 𝑦𝑗+1/2) d𝑠

)︃
d𝑡

+

ˆ 𝑡n+1

𝑡n

(︃
 𝑥i+1/2

𝑥i−1/2

𝑣(𝑡, 𝑠, 𝑦𝑗−1/2) d𝑠−
 𝑥i+1/2

𝑥i−3/2

𝑣(𝑡, 𝑠, 𝑦𝑗−1/2) d𝑠

)︃
d𝑡

]︃

+
𝑔+

𝑖,𝑗+1/2 + 𝑔+
𝑖,𝑗−1/2

2

[︃
ˆ 𝑡n+1

𝑡n

 

𝐾i,j

𝜕𝑦𝑣(𝑡, ·) dxd𝑡−
ˆ 𝑡n+1

𝑡n

 

𝐾i−1,j

𝜕𝑦𝑣(𝑡, ·) dxd𝑡

]︃

=: 𝐾𝑔,1
𝑖,𝑗 +𝐾𝑔,2

𝑖,𝑗 .

Write the term 𝐾𝑓
𝑖,𝑗 (see (3.4b)) as

𝐾𝑓
𝑖,𝑗 =

(︃
𝑓
(︀
𝛼𝑛

𝑖,𝑗

)︀ ˆ 𝑡n+1

𝑡n

 

𝐾i,j

div(u)(𝑡, ·) dxd𝑡− 𝑓(𝛼𝑛
𝑖−1,𝑗)

ˆ 𝑡n+1

𝑡n

 

𝐾i−1,j

div(u)(𝑡, ·) dxd𝑡

)︃

−
(︃
𝑓
(︀
𝛼𝑛

𝑖,𝑗

)︀ ˆ 𝑡n+1

𝑡n

 

𝐾i,j

𝜕𝑦𝑣(𝑡, ·) dxd𝑡− 𝑓(𝛼𝑛
𝑖−1,𝑗)

ˆ 𝑡n+1

𝑡n

 

𝐾i−1,j

𝜕𝑦𝑣(𝑡, ·) dxd𝑡

)︃

=: 𝐾𝑓,1
𝑖,𝑗 +𝐾𝑓,2

𝑖,𝑗 .

Use the Lipschitz continuity of 𝑔, Lipschitz continuity of 𝑣 in the 𝑥-direction, and Definition 2.2 to obtain

|𝐾𝑔,1
𝑖,𝑗 | ≤ ̃︀𝑐Lip(𝑔)

(︀
|𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖,𝑗−1| + |𝛼𝑛

𝑖,𝑗+1 − 𝛼𝑛
𝑖,𝑗 |
)︀ ˆ 𝑡n+1

𝑡n

‖𝜕𝑥𝑣(𝑡, ·)‖𝐿∞(Ω) d𝑡. (3.13)

A use of A.1i on 𝐾𝑓,1
𝑖,𝑗 yields

𝐾𝑓,1
𝑖,𝑗 =

𝑓
(︀
𝛼𝑛

𝑖,𝑗

)︀
− 𝑓

(︀
𝛼𝑛

𝑖−1,𝑗

)︀

2

[︃
ˆ 𝑡n+1

𝑡n

 

𝐾i,j

div(u)(𝑡, ·) dxd𝑡+

ˆ 𝑡n+1

𝑡n

 

𝐾i−1,j

div(u)(𝑡, ·) dxd𝑡

]︃

+
𝑓
(︀
𝛼𝑛

𝑖,𝑗

)︀
+ 𝑓

(︀
𝛼𝑛

𝑖−1,𝑗

)︀

2

[︃
ˆ 𝑡n+1

𝑡n

 

𝐾i,j

div(u)(𝑡, ·) dxd𝑡−
ˆ 𝑡n+1

𝑡n

 

𝐾i−1,j

div(u)(𝑡, ·) dxd𝑡

]︃
.

Therefore, |𝐾𝑓,1
𝑖,𝑗 | can be bounded by
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|𝐾𝑓,1
𝑖,𝑗 | ≤ Lip(𝑓)|𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗 |

ˆ 𝑡n+1

𝑡n

‖div(u)(𝑡, ·)‖𝐿∞(Ω) d𝑡

+ (Lip(𝑓)𝛼𝑀 + 𝑓0)

ˆ 𝑡n+1

𝑡n

⃒⃒
⃒⃒
⃒

 

𝐾i,j

div(u)(𝑡, ·) dx−
 

𝐾i−1,j

div(u)(𝑡, ·) dx

⃒⃒
⃒⃒
⃒ d𝑡.

The sum 𝐾𝑔,2
𝑖,𝑗 +𝐾𝑓,2

𝑖,𝑗 can be written as

𝐾𝑔,2
𝑖,𝑗 +𝐾𝑓,2

𝑖,𝑗 =
−2𝑓

(︀
𝛼𝑛

𝑖,𝑗

)︀
+ 𝑔+

𝑖,𝑗+1/2 + 𝑔+
𝑖,𝑗−1/2

2

ˆ 𝑡n+1

𝑡n

 

𝐾i,j

𝜕𝑦𝑣(𝑡, ·) dxd𝑡

+
2𝑓
(︀
𝛼𝑛

𝑖−1,𝑗

)︀
− 𝑔+

𝑖,𝑗+1/2 − 𝑔+
𝑖,𝑗−1/2

2

ˆ 𝑡n+1

𝑡n

 

𝐾i−1,j

𝜕𝑦𝑣(𝑡, ·) dxd𝑡.

The Lipschitz continuity of 𝑔 and 𝑓 and 𝑔(𝑎, 𝑎) = 𝑓(𝑎) yield

| − 2𝑓
(︀
𝛼𝑛

𝑖,𝑗

)︀
+ 𝑔+

𝑖,𝑗+1/2 + 𝑔+
𝑖,𝑗−1/2| ≤ Lip(𝑔)|𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖,𝑗−1| + Lip(𝑔)|𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖,𝑗+1|,

|2𝑓
(︀
𝛼𝑛

𝑖−1,𝑗

)︀
+ 𝑔+

𝑖,𝑗+1/2 + 𝑔+
𝑖,𝑗−1/2| ≤ 2Lip(𝑓)|𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗 |

+ Lip(𝑔)|𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑖,𝑗−1| + Lip(𝑔)|𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑖,𝑗+1|. (3.14a)

Combine the bounds (3.13)–(3.14a) to obtain

|𝐾𝑓
𝑖,𝑗 +𝐾𝑔

𝑖,𝑗 | ≤ |𝐾𝑓,1
𝑖,𝑗 | + |𝐾𝑔,1

𝑖,𝑗 | + |𝐾𝑓,2
𝑖,𝑗 +𝐾𝑔,2

𝑖,𝑗 |

≤ Lip(𝑓)|𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑖−1,𝑗 |
(︂
ˆ 𝑡n+1

𝑡n

‖div(u)(𝑡, ·)‖𝐿∞(Ω) d𝑡+ 2

ˆ 𝑡n+1

𝑡n

‖𝜕𝑦𝑣(𝑡, ·)‖𝐿∞(Ω) d𝑡

)︂

+ Lip(𝑔)
(︀
|𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖,𝑗−1| + |𝛼𝑛

𝑖,𝑗+1 − 𝛼𝑛
𝑖,𝑗 |
)︀(︂
̃︀𝑐
ˆ 𝑡n+1

𝑡n

(︀
‖𝜕𝑥𝑣(𝑡, ·)‖𝐿∞(Ω) + 2‖𝜕𝑦𝑣(𝑡, ·)‖𝐿∞(Ω)

)︀
d𝑡

)︂

+ (Lip(𝑓)𝛼𝑀 + 𝑓0)

ˆ 𝑡n+1

𝑡n

⃒⃒
⃒⃒
⃒

 

𝐾i,j

div(u)(𝑡, ·) dx−
 

𝐾i−1,j

div(u)(𝑡, ·) dx

⃒⃒
⃒⃒
⃒ d𝑡. (3.15)

Step 5. Use (3.11), (3.12), and (3.15) to obtain

|𝛼ℎ,𝛿(𝑡𝑛+1, ·)|𝐿1
yBVx

≤ |𝛼ℎ,𝛿(𝑡𝑛, ·)|𝐿1
yBVx

+ 4 (̃︀𝑐+ 1) Lip(𝑔)|𝛼ℎ,𝛿(𝑡𝑛, ·)|𝐿1
xBVy

ˆ 𝑡n+1

𝑡n

‖∇u‖𝐿∞(Ω) d𝑡

+ 3Lip(𝑓)|𝛼ℎ,𝛿(𝑡𝑛, ·)|𝐿1
yBVx

ˆ 𝑡n+1

𝑡n

‖∇u‖𝐿∞(Ω) d𝑡

+ (Lip(𝑓)𝛼𝑀 + 𝑓0)

ˆ 𝑡n+1

𝑡n

|Π0
ℎ(div(u))(𝑡, ·)|𝐿1

yBVx
d𝑡, (3.16)

where the piecewise constant projection Π0
ℎ : BVx(Ω) → BVx(Ω) for an admissible grid 𝑋𝑘 × 𝑌ℎ is defined

by, for 𝛽 ∈ BVx(Ω),
(︀
Π0

ℎ(𝛽)
)︀
(x) :=

ffl

𝐾i,j
𝛽 dx ∀x ∈ 𝐾𝑖,𝑗 . A similar argument can be obtained with 𝑖 and

𝑗 interchanged and when combined with (3.16) yields

|𝛼ℎ,𝛿(𝑡𝑛+1, ·)|BVx,y
≤ |𝛼ℎ,𝛿(𝑡𝑛, ·)|BVx,y

(︂
1 + C

ˆ 𝑡n+1

𝑡n

‖∇u(𝑡, ·)‖𝐿∞(Ω) d𝑡

)︂

+ C

ˆ 𝑡n+1

𝑡n

|Π0
ℎ(div(u))|BVx,y d𝑡, (3.17a)
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Figure 5. Differences between horizontal and vertical levels. Here, 𝑎∗𝑖,𝑗+1/2 = 𝑣𝑛 ∗
𝑖,𝑗+1/2𝑔

∗
𝑖,𝑗+1/2,

where 𝑔+
𝑖,𝑗+1/2 = 𝑔

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖,𝑗+1

)︀
and 𝑔−𝑖,𝑗+1/2 = 𝑔

(︀
𝛼𝑛

𝑖,𝑗+1, 𝛼
𝑛
𝑖,𝑗

)︀
.

where C = max (Lip(𝑓)𝛼𝑀 + 𝑓0, 3Lip(𝑓) + 4Lip(𝑔)(̃︀𝑐+ 1) + 1). Apply induction on (3.17a) with 𝑛 as the
index and use the fact that |Π0

ℎ(div(u))|BVx,y ≤ |div(u)|BVx,y to obtain

|𝛼ℎ,𝛿(𝑡𝑛, ·)|BVx,y
≤ Bu

(︃
|𝛼ℎ,𝛿(𝑡0, ·)|BVx,y

+ C

ˆ 𝑇

0

|div(u)|BVx,y
d𝑡

)︃
. (3.17b)

The desired conclusion follows from (3.17b) and (2.4b).
�

Remark 3.3 (Regrouping of 𝐽∗
𝑖,𝑗 in (3.5)). Observe that 𝐽⋆

𝑖,𝑗/𝜆𝑗 is the horizontal variation between differences
across two vertical levels as in Figure 5(a). However, this form does not yield any terms like 𝛼𝑛

𝑖,𝑟 − 𝛼𝑛
𝑝,𝑟, where

𝑝 ∈ {𝑖+ 1, 𝑖− 1} and 𝑟 ∈ {𝑗 + 1, 𝑗, 𝑗 − 1}, and thereby annihilates any chance of expressing 𝛼𝑛+1
𝑖,𝑗 − 𝛼𝑛+1

𝑖−1,𝑗 as a
linear combination of such terms, which is crucial in controlling the growth of spatial variation over time. This
problem can be fixed by considering the terms 𝐽+

𝑖,𝑗 and 𝐽−
𝑖,𝑗 as vertical variations between differences across two

horizontal levels, see (3.5), as in Figure 5(b).

Proposition 3.4 (Temporal variation). The function 𝛼ℎ,𝛿 satisfies

|𝛼ℎ,𝛿|𝐿1
x,yBVt

≤ 4Bu

(︁
|𝛼0|BVx,y

+ C |div(u)|𝐿1
tBVx,y

)︁
Lip(𝑔)‖∇u‖𝐿1

t 𝐿∞(ΩT )

+ (Lip(𝑓)𝛼𝑀 + 𝑓0) |div(u)|𝐿1(ΩT ).

The proof of Proposition 3.4 is obtained by writing 𝛼𝑛+1
𝑖,𝑗 − 𝛼𝑛

𝑖,𝑗 in terms of the differences 𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑙,𝑚, where
(𝑙,𝑚) ∈ {(𝑖, 𝑗 − 1), (𝑖, 𝑗 + 1), (𝑖− 1, 𝑗), (𝑖+ 1, 𝑗)} and by applying Proposition 3.2.

Proof. Use (2.6) to write

𝛼𝑛+1
𝑖,𝑗 − 𝛼𝑛

𝑖,𝑗 = 𝜇𝑖𝑀
𝑥
𝑖+1/2,𝑗

(︀
𝛼𝑛

𝑖+1,𝑗 − 𝛼𝑛
𝑖,𝑗

)︀
+ 𝜆𝑗𝑀

𝑦
𝑖,𝑗+1/2

(︀
𝛼𝑛

𝑖,𝑗+1 − 𝛼𝑛
𝑖,𝑗

)︀

+ 𝜇𝑖𝑀
𝑥
𝑖−1/2,𝑗

(︀
𝛼𝑛

𝑖−1,𝑗 − 𝛼𝑛
𝑖,𝑗

)︀
+ 𝜆𝑗𝑀

𝑦
𝑖,𝑗−1/2

(︀
𝛼𝑛

𝑖,𝑗−1 − 𝛼𝑛
𝑖,𝑗

)︀

− 𝑓
(︀
𝛼𝑛

𝑖,𝑗

)︀
(︃
ˆ 𝑡n+1

𝑡n

 

𝐾i,j

div(u)(𝑡,x) dxd𝑡

)︃
. (3.18)
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Multiply both sides of (3.18) by ℎ𝑗𝑘𝑖, sum over 𝑛 = 0, . . . , 𝑁 , 𝑖 = 0, . . . , 𝐼 and 𝑗 = 0, . . . , 𝐽 , and use the
homogeneous boundary condition on u to obtain

𝐽∑︁

𝑗=0

𝐼∑︁

𝑖=0

ℎ𝑗𝑘𝑖

𝑁∑︁

𝑛=0

|𝛼𝑛+1
𝑖,𝑗 − 𝛼𝑛

𝑖,𝑗 | ≤
𝑁∑︁

𝑛=0

𝛿

𝐽∑︁

𝑗=0

ℎ𝑗

𝐼−1∑︁

𝑖=0

𝑀𝑥
𝑖+1/2,𝑗 |𝛼𝑛

𝑖+1,𝑗 − 𝛼𝑛
𝑖,𝑗 |

+

𝑁∑︁

𝑛=0

𝛿

𝐼∑︁

𝑖=0

𝑘𝑖

𝐽−1∑︁

𝑗=0

𝑀𝑦
𝑖,𝑗+1/2|𝛼

𝑛
𝑖,𝑗+1 − 𝛼𝑛

𝑖,𝑗 | +
𝑁∑︁

𝑛=0

𝛿

𝐽∑︁

𝑗=0

ℎ𝑗

𝐼∑︁

𝑖=1

𝑀𝑥
𝑖−1/2,𝑗 |𝛼𝑛

𝑖−1,𝑗 − 𝛼𝑛
𝑖,𝑗 |

+

𝑁∑︁

𝑛=0

𝛿

𝐼∑︁

𝑖=0

𝑘𝑖

𝐽∑︁

𝑗=1

𝑀𝑦
𝑖,𝑗−1/2|𝛼

𝑛
𝑖,𝑗−1 − 𝛼𝑛

𝑖,𝑗 | +
𝐽∑︁

𝑗=0

𝐼∑︁

𝑖=0

𝑁∑︁

𝑛=0

𝑓
(︀
𝛼𝑛

𝑖,𝑗

)︀
(︃
ˆ 𝑡n+1

𝑡n

ˆ

𝐾i,j

div(u)(𝑡,x) dxd𝑡

)︃
.

(3.19)

Use the Lipschitz continuity of the functions 𝑓 and 𝑔 and (3.19) to obtain
ˆ

Ω

|𝛼ℎ,𝛿(·, 𝑥, 𝑦)|BVt(0,𝑇 ) d𝑥d𝑦 ≤ 4Lip(𝑔)

ˆ 𝑇

0

‖∇u(𝑡, ·)‖𝐿∞(Ω)|𝛼ℎ,𝛿(𝑡, ·)|BVx,y d𝑡

+ (Lip(𝑓)𝛼𝑀 + 𝑓0)‖div(u)‖𝐿1(ΩT ). (3.20)

Use (3.20) and Proposition 3.2 to arrive at the desired result. �

The result (2.4) in Theorem 2.4 follows from Propositions 3.2, 3.4 and (2.1). The homogeneous source term
in (1.1) can be replaced with a function S(𝑡,x, 𝛼) that satisfies the assumption:

(AS.4) S ∈ 𝐿1
𝑡𝐿

∞(Ω𝑇 ) and S(𝑡,x, 𝑧) is Lipschitz continuous with respect to 𝑧 (with constant Lip𝑧(S)),
uniformly with respect to 𝑡 and x, and is Lipschitz continuous with respect to x (with constant Lipx(S)),
uniformly with respect to 𝑡 and 𝑧.

In this case, we obtain the following corollary to Theorem 2.4.

Corollary 3.5. Let (AS.1)–(AS.4) and the Courant–Friedrichs–Lewy (CFL) condition

4𝛿max𝑖,𝑗

(︁
1
𝑘i

+ 1
ℎj

)︁
Lip(𝑔)‖u‖𝐿∞(ΩT ) ≤ 1 hold. If 𝛼0 ∈ 𝐿∞(Ω) ∩ BVx(Ω) then, the time-reconstruct

𝛼ℎ,𝛿 : Ω𝑇 → R reconstructed from the values 𝛼𝑛
𝑖,𝑗 obtained from the scheme

𝛼𝑛+1
𝑖,𝑗 = 𝛼𝑛

𝑖,𝑗 − 𝜇𝑖(𝐹𝑖+1/2,𝑗 − 𝐹𝑖−1/2,𝑗) − 𝜆𝑗

(︀
𝐺𝑖,𝑗+1/2 −𝐺𝑖,𝑗−1/2

)︀
+

ˆ 𝑡n+1

𝑡n

 

𝐾i,j

S
(︀
𝑡,x, 𝛼𝑛

𝑖,𝑗

)︀
d𝑡dx

satisfies |𝛼ℎ,𝛿|BVx,y,t
≤ CBV, where CBV depends on 𝑇 , 𝛼0, 𝑓 , 𝑔, ‖∇u‖𝐿1

t 𝐿∞(ΩT ), |div(u)|𝐿1
tBVx,y

, Lipx(S),
Lip𝑧(S), and |S|𝐿1

tBVx,y
.

Proof. It is enough to estimate variation of the source term in the 𝑥 direction, which can be written as

V𝑖,𝑗 :=

ˆ 𝑡n+1

𝑡n

 

𝐾i,j

S
(︀
𝑡,x, 𝛼𝑛

𝑖,𝑗

)︀
d𝑡dx−

ˆ 𝑡n+1

𝑡n

 

𝐾i−1,j

S
(︀
𝑡,x, 𝛼𝑛

𝑖−1,𝑗

)︀
d𝑡dx. (3.21)

Add and subtract
´ 𝑡n+1

𝑡n

ffl

𝐾i,j
S
(︀
𝑡,x, 𝛼𝑛

𝑖−1,𝑗

)︀
d𝑡dx to (3.21) and group the terms appropriately to obtain

|V𝑖,𝑗 | ≤
ˆ 𝑡n+1

𝑡n

 

𝐾i,j

⃒⃒
S(𝑡,x, 𝛼𝑛

𝑖,𝑗) − S(𝑡,x, 𝛼𝑛
𝑖−1,𝑗)

⃒⃒
d𝑡dx

+

ˆ 𝑡n+1

𝑡n

⃒⃒
⃒⃒
⃒

 

𝐾i,j

S(𝑡,x, 𝛼𝑛
𝑖−1,𝑗) dx−

 

𝐾i−1,j

S(𝑡,x, 𝛼𝑛
𝑖−1,𝑗) dx

⃒⃒
⃒⃒
⃒ d𝑡 =: V1 + V2. (3.22)

Use the Lipschitz continuity of S with respect to the third argument to bound V1 by 𝛿 Lip𝑧(S)|𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑖−1,𝑗 |.
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Sum (3.22) for 𝑖 = 1, . . . , 𝐼 to obtain

𝐼∑︁

𝑖=1

|𝑉𝑖,𝑗 | ≤ 𝛿 Lip𝑧(S)|𝛼ℎ,𝛿(𝑡𝑛, ·)|BVx
+ Lipx(S)

ˆ 𝑡n+1

𝑡n

⃒⃒
Π0

ℎ(S)
⃒⃒
BVx

d𝑡. (3.23)

Rest of the proof follows by adding the terms in the right hand side of (3.23) to the right hand side of (3.16)
and by following the steps from there on. �

4. BV estimate for conservation laws with fully nonlinear flux

Theorem 2.4 can be extended to the case with fully nonlinear flux such as

𝜕𝑡𝛼+ div(F (𝑡,x, 𝛼)) = 0 in Ω𝑇 and
𝛼(0, ·) = 𝛼0 in Ω.

}︂
(4.1)

The strong BV estimate on finite volume schemes for (4.1) on square Cartesian grids is obtained by Chainais-
Hilairet [4] under the assumption that divx(F ) = 0. In this article, we relax this condition and obtain bounded
variation estimates for 𝛼 under the following assumptions.

(AS.5) F (𝑡,x, 𝑧) is C 1(Ω𝑇 ×R) and is Lipschitz continuous with respect to 𝑧 (with constant Lip(F )), uniformly
with respect to (𝑡,x), and 𝜕𝑧F is Lipschitz continuous with respect to x (with constant Lip(𝜕𝑠F )),
uniformly with respect to 𝑡 and 𝑧,

(AS.6) |divx(F )|𝐿1
tBVx,y

< ∞ and divx(F ) is Lipschitz continuous with respect to 𝑧 (with constant constant
Lip(divx(F ))), uniformly with respect to 𝑡 and x.

Observe that assumption divx(F ) = 0 manifests as div(u) = 0 in (1.1), where F (𝑡,x, 𝛼) is same as
u(𝑡,x)𝑓(𝛼). Use (AS.5) to write the flux F as F := (𝐹1, 𝐹2), 𝐹1 = 𝒜 + ℬ, and 𝐹2 = 𝒞 + 𝒟, where 𝒜 and
𝒞 are monotonically nondecreasing and ℬ and 𝒟 are monotonically nonincreasing in 𝑧, uniformly with respect
to 𝑡 and x. In this case, we can set the following finite volume scheme on an admissible grid 𝑋ℎ × 𝑌𝑘:

𝛼𝑛+1
𝑖,𝑗 = 𝛼𝑛

𝑖,𝑗 −
1

𝑘𝑖

(︁
𝒜𝑛

𝑖+1/2,𝑗(𝛼
𝑛
𝑖,𝑗) −𝒜𝑛

𝑖−1/2,𝑗(𝛼
𝑛
𝑖−1,𝑗) + ℬ𝑛

𝑖+1/2,𝑗

(︀
𝛼𝑛

𝑖+1,𝑗

)︀
− ℬ𝑛

𝑖−1/2,𝑗

(︀
𝛼𝑛

𝑖,𝑗

)︀)︁

− 1

ℎ𝑗

(︁
𝒞𝑛

𝑖,𝑗+1/2(𝛼
𝑛
𝑖,𝑗) − 𝒞𝑛

𝑖,𝑗−1/2

(︀
𝛼𝑛

𝑖,𝑗−1

)︀
+ 𝒟𝑛

𝑖,𝑗+1/2

(︀
𝛼𝑛

𝑖,𝑗+1

)︀
−𝒟𝑛

𝑖,𝑗−1/2

(︀
𝛼𝑛

𝑖,𝑗

)︀)︁
(4.2)

with the initial condition (2.4b), where the numerical fluxes are defined, for 𝛾 ∈ {𝒜,ℬ}, and 𝜚 ∈ {𝒞,𝒟}, by

𝛾𝑛
𝑖+1/2,𝑗(𝑠) =

ˆ 𝑡n+1

𝑡n

 𝑦j+1/2

𝑦j−1/2

𝛾(𝑡, 𝑥𝑖+1/2, 𝑦, 𝑠)d𝑦 d𝑡 and

𝜚𝑛
𝑖,𝑗+1/2(𝑠) =

ˆ 𝑡n+1

𝑡n

 𝑥i+1/2

𝑥i−1/2

𝜚(𝑡, 𝑥, 𝑦𝑗+1/2, 𝑠)d𝑥d𝑡.

Theorem 4.1 (Bounded variation for fully nonlinear flux). Let the assumptions (AS.4) and (AS.5) and the
following CFL condition hold: 4𝛿 Lip(F ) max𝑖,𝑗(

1
𝑘i

+ 1
ℎj

) ≤ 1. Then the piecewise time-reconstruct 𝛼ℎ,𝛿 : Ω𝑇 → R

re-constructed from the values 𝛼𝑛
𝑖,𝑗 obtained from the scheme (4.2) satisfies |𝛼ℎ,𝛿|BVx,y,t(ΩT ) ≤ C , where C

depends on 𝑇 , 𝛼0, |divx(F )|𝐿1
tBVx,y

, and Lip(divx(F )).

The proof of Theorem 4.1 is based on two main ideas. Firstly, the terms in the scheme (4.2) are re-

arranged and grouped appropriately so that the term
´ 𝑡n

𝑡n

ffl

𝐾i,j
divx(F )(𝑡,x, 𝛼𝑛

𝑖,𝑗) dxd𝑡 can be separately es-

timated (see (4.4)). Secondly, we employ the Lipschitz continuity of divx(F ) to bound difference of the

terms {
´ 𝑡n+1

𝑡n

ffl

𝐾l,j
divx(F )(𝑡,x, 𝛼𝑛+1

𝑙,𝑗 ) dxd𝑡 : 𝑙 = 𝑖, 𝑖 + 1} by the BV seminorms
´ 𝑡n+1

𝑡n
|𝛼ℎ,𝛿(𝑡, ·)|BVx d𝑡 and

´ 𝑡n+1

𝑡n
|divx(F )(𝑡, ·, ·)|BVx

d𝑡.
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Proof. Note that the scheme (4.2) can be expressed as

𝛼𝑛+1
𝑖,𝑗 =

⎛
⎜⎝
𝛼𝑛

𝑖,𝑗 − ∆1,𝑛
𝑖,𝑗

(︀
𝛼𝑛

𝑖,𝑗 , 𝛼
𝑛
𝑖−1,𝑗

)︀ (︀
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖−1,𝑗

)︀
− ∆2,𝑛

𝑖,𝑗 (𝛼𝑛
𝑖,𝑗 , 𝛼

𝑛
𝑖+1,𝑗)(𝛼

𝑛
𝑖,𝑗 − 𝛼𝑛

𝑖+1,𝑗)

− 1

ℎ𝑗

(︀
𝑐𝑖,𝑗−1/2

(︀
𝛼𝑛

𝑖,𝑗

)︀
− 𝑐𝑖,𝑗−1/2

(︀
𝛼𝑛

𝑖,𝑗−1

)︀
+ 𝑑𝑖,𝑗+1/2

(︀
𝛼𝑛

𝑖,𝑗+1

)︀
− 𝑑𝑖,𝑗+1/2

(︀
𝛼𝑛

𝑖,𝑗

)︀)︀

⎞
⎟⎠

−
(︂
ˆ 𝑡n+1

𝑡n

 

𝐾i,j

divx(F )(𝑡,x, 𝛼𝑛
𝑖,𝑗) dxd𝑡,

)︂
=: T1,𝑖 − T2,𝑖, (4.4)

where

∆1,𝑛
𝑖,𝑗 (𝑝, 𝑞) =

𝒜𝑛
𝑖−1/2,𝑗(𝑝) −𝒜𝑛

𝑖−1/2,𝑗(𝑞)

𝑝− 𝑞
and ∆2,𝑛

𝑖,𝑗 (𝑝, 𝑞) =
ℬ𝑛

𝑖+1/2,𝑗(𝑝) − ℬ𝑛
𝑖+1/2,𝑗(𝑞)

𝑞 − 𝑝
·

It is enough to estimate |𝛼ℎ,𝛿|𝐿1
yBVx

as we did in the proof of Proposition 3.2. Take the difference between the

scheme (4.4) written for 𝛼𝑛+1
𝑖+1,𝑗 and 𝛼𝑛+1

𝑖,𝑗 . The difference T1,𝑖+1 −T1,𝑖 can be estimated exactly as in the proof

of Lemma 8 from [4], wherein the CFL condition in Theorem 4.1 enables us to express 𝛼𝑛+1
𝑖,𝑗 −𝛼𝑛+1

𝑖−1,𝑗 as a convex
linear combination of differences at the previous time step 𝑛. Consider the difference |T2,𝑖+1 − T2,𝑖|:

|T2,𝑖+1 − T2,𝑖| ≤
ˆ 𝑡n+1

𝑡n

⃒⃒
⃒⃒
⃒

 

𝐾i+1,j

divx(F )(𝑡,x, 𝛼𝑛
𝑖+1,𝑗) dx−

 

𝐾i,j

divx(F )(𝑡,x, 𝛼𝑛
𝑖+1,𝑗) dx

⃒⃒
⃒⃒
⃒ d𝑡

+

ˆ 𝑡n+1

𝑡n

⃒⃒
⃒⃒
⃒

 

𝐾i,j

divx(F )(𝑡,x, 𝛼𝑛
𝑖+1,𝑗) dx−

 

𝐾i,j

divx(F )(𝑡,x, 𝛼𝑛
𝑖,𝑗) dx

⃒⃒
⃒⃒
⃒ d𝑡 =: Q1 + Q2.(4.5)

The term Q2 can be estimated as

Q2 ≤ 𝛿 |Lip(divx(F ))| |𝛼𝑛
𝑖+1,𝑗 − 𝛼𝑛

𝑖,𝑗 |. (4.6)

Follow the proof of Lemma 8 from [4] and use (4.5) and (4.6) to obtain

|𝛼ℎ,𝛿(𝑡𝑛+1, ·)|BVx,y
≤ |𝛼ℎ,𝛿(𝑡𝑛, ·)|BVx,y

(1 + 6𝛿Lip(𝜕𝑠F ) + 𝛿Lip(divx(F )))

+

ˆ 𝑡n+1

𝑡n

|Π0
ℎ(divx(F ))|BVx,y

d𝑡.

Apply induction on the above result and use similar arguments as in the proof of Proposition 3.4 to obtain the
desired result. �

Remark 4.2. Choice of the functions 𝒜, ℬ, 𝒞, and 𝒟 for the scheme (4.2) is not arbitrary. It is crucial that 𝒜
and 𝒞 are nondecreasing, ℬ and 𝒟 are nonincreasing, and the CFL condition in Theorem 4.1 holds. We use the
following pairs to obtain the results provided in Table 10:

𝒜(𝑡, 𝑥, 𝑦, 𝑧) = (sin((𝑥− 𝑡)𝑧) + M𝑧)/2, ℬ(𝑡, 𝑥, 𝑦, 𝑧) = (sin((𝑥− 𝑡)𝑧) − M𝑧)/2,

𝒞(𝑡, 𝑥, 𝑦, 𝑧) = (cos((𝑦 − 𝑡)𝑧) + M𝑧)/2, 𝒞(𝑡, 𝑥, 𝑦, 𝑧) = (cos((𝑦 − 𝑡)𝑧) − M𝑧)/2,

where M = Lip(F ). This choice of M ensures the monotonicity conditions required by 𝒜, ℬ, 𝒞, and 𝒟. Moreover,
𝒜, ℬ, 𝒞, and 𝒟 become Lipschitz continuous with Lipschitz constant Lip(F ) so that the CFL condition in
Theorem 4.1 holds.

Remark 4.3 (Strong BV estimates in three dimensions). Analogous results to Theorems 2.4 and 4.1 in three
spatial dimensions are obtained by employing the same techniques used in the two dimensional framework.
The CFL conditions and constants in Theorems 2.4 and 4.1 need to be modified to accommodate the material
advection in the third dimension also.
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5. Numerical examples

We consider three examples to demonstrate the conclusions of Theorems 2.4 and 4.1. In Example 5.1, we
manufacture a source term such that the conservation law (5.1) has a smooth solution. In Example 5.2, the
source term is set to be zero and a discontinuous function is chosen as the initial data, and as a result the exact
solution also becomes discontinuous. Example 5.2 helps to understand how the discontinuities in the solution
affect the growth of BV seminorm. In Example 5.3, we consider a conservation law with fully nonlinear flux
with an exact solution and demonstrate conclusions of Theorem 4.1.

Example 5.1 (Smooth solution). We consider the spatial domain Ω = (−1, 1)2, temporal domain (0, 1), velocity
vector field u = (𝑢, 𝑣) defined by

𝑢(𝑡, 𝑥, 𝑦) := 𝑡 sin(𝜋𝑥) cos(𝜋𝑦/2)/16 and 𝑣(𝑡, 𝑥, 𝑦) := 𝑡 sin(𝜋𝑦) cos(𝜋𝑥/2)/16,

initial data 𝛼0(𝑥, 𝑦) := 1 ∀ (𝑥, 𝑦) ∈ Ω, and an appropriate source term S such that the problem

𝜕𝑡𝛼+ div(u𝑓(𝛼)) = S in Ω1 and
𝛼(0, 𝑥, 𝑦) = 𝛼0(𝑥, 𝑦) ∀ (𝑥, 𝑦) ∈ Ω,

}︂
(5.1)

has the unique smooth solution 𝛼(𝑡, 𝑥, 𝑦) = exp(𝑡(𝑥+ 𝑦)) ∀ (𝑡, 𝑥, 𝑦) ∈ Ω1, where Ω1 = (0, 1) × Ω.

Example 5.2 (Discontinuous solution). The spatial domain is Ω = (−3, 3)2 and the temporal domain is (0, 2).
If the flux function 𝑓 in (5.1) is linear, then we set the velocity vector field u as (1, 1) and the source term S as
zero so that the problem (5.1) has the unique solution 𝛼(𝑡, 𝑥, 𝑦) := 𝛼0(𝑥− 𝑡, 𝑦 − 𝑡). The initial data considered
is 𝛼0(𝑥, 𝑦) = 1[𝑥>−1/4]/2 +1[𝑦>−1/4]/2, where 1𝐴 is the characteristic function of the set 𝐴. If the flux function
𝑓 is nonlinear, then we set the velocity vector field u = (𝑢, 𝑣) as

𝑢(𝑡, 𝑥, 𝑦) = sin(𝜋𝑥) cos(𝜋𝑦/2)/20 and 𝑣(𝑡, 𝑥, 𝑦) = sin(𝜋𝑦) cos(𝜋𝑥/2)/20.

Note that in the case of nonlinear flux, the vector u is zero on the boundary of the square (−3, 3)2, and as
a result we can take the boundary data (𝛼u)|𝜕Ω · n|𝜕Ω = 0, where n|𝜕Ω is the outward normal to 𝜕Ω. This
homogeneous boundary condition on u is useful since the exact solution to the problem (5.1) with a nonlinear
flux is not available. The source term and the initial condition remain the same as in the case of linear flux.

Example 5.3 (Fully nonlinear flux). The spatial and temporal domains, initial data, and exact solution are
chosen as in Example 5.1. The nonlinear conservation law considered is

𝜕𝑡𝛼+ div (sin((𝑥− 𝑡)𝛼), cos((𝑦 − 𝑡)𝛼)) = S𝑁 in Ω1 and
𝛼(0, 𝑥, 𝑦) = 𝛼0(𝑥, 𝑦) ∀ (𝑥, 𝑦) ∈ Ω.

}︂
(5.2)

The source term S𝑁 is chosen such that (5.2) has the smooth solution 𝛼(𝑡, 𝑥, 𝑦) = exp(𝑡(𝑥+ 𝑦)). Note that the
divergence of the flux div (sin((𝑥− 𝑡)𝛼), cos((𝑦 − 𝑡)𝛼)) = 𝛼 cos((𝑥− 𝑡)𝛼)−𝛼 sin((𝑦− 𝑡)𝛼) is not identically zero.

We consider two fluxes in the tests: (i) linear flux, 𝑓(𝑠) = 𝑠 and (ii) sinusoidal flux, 𝑓(𝑠) = sin(2𝜋𝑠). The
numerical flux used is Godunov defined by

𝑔(𝑎, 𝑏) =

{︃
max

𝑏<𝑠<𝑎
(𝑓(𝑠)) if 𝑏 < 𝑎,

min
𝑎<𝑠<𝑏

(𝑓(𝑠)) if 𝑎 < 𝑏.

The families of meshes considered are (a) Cartesian and (b) perturbed Cartesian (see Figs. 6a and 6b). A
perturbed Cartesian grid is non Cartesian and it closely approximates a Cartesian grid 𝑋𝑘×𝑌ℎ. It consists of the
nodes (̃︀𝑥𝑖+1/2, ̃︀𝑦𝑗+1/2), wherein (̃︀𝑥𝑖+1/2, ̃︀𝑦𝑗+1/2) := (𝑥𝑖+1/2, 𝑦𝑗+1/2)+ 𝜖(𝑘𝑖, ℎ𝑗), where (𝑥𝑖+1/2, 𝑦𝑗+1/2) ∈ 𝑋𝑘 ×𝑌ℎ.
Here, 𝜖 ≤ max(ℎ𝑗/4, 𝑘𝑖/4) and recall that 𝑘𝑖 := 𝑥𝑖+1/2−𝑥𝑖−1/2 and ℎ𝑗 = 𝑦𝑗+1/2−𝑦𝑗−1/2. Numerical experiments
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Figure 6. Cartesian and perturbed Cartesian grid types. (a) Cartesian. (b) Perturbed Cartesian.

Table 1. Arrangement of contents in Tables 2–5 and Tables 6–9.

Tables showing BV norms
Continuous flux Grid

Example 5.1 Example 5.2

Table 2 Table 6 Linear, f(s) = s Cartesian
Table 3 Table 7 Sinusoidal, f(s) = sin(2πs) Cartesian
Table 4 Table 8 Linear, f(s) = s Perturbed Cartesian
Table 5 Table 9 Sinusoidal, f(s) = sin(2πs) Perturbed Cartesian

on the perturbed Cartesian grid and comparison with the results from Cartesian grids aid to identify the
possibility of extending the analysis in this article to unstructured polygonal meshes.

The 𝐿1 rate is defined by

𝐿1 rate =
log
(︁⃒⃒
𝛼ℎk+1,𝛿k+1

(𝑇, ·)
⃒⃒
𝐿1(Ω)

/ |𝛼ℎk,𝛿k
(𝑇, ·)|𝐿1(Ω)

)︁

log(ℎ𝑘+1/ℎ𝑘)
·

Discretisation factors and BV norms corresponding to Cartesian and perturbed Cartesian grids are presented in
Tables 2–5 and Tables 6–9. The 𝐿1 errors and 𝐿1 rates are also included whenever an exact solution is available.
Arrangement of the contents in Tables 2–9 are outlined in Table 1 for clarity. The 𝐿1 rates of the discrete
solutions obtained by applying scheme 4.2 to Example 5.3 is provided in Table 10.

The captions of Tables 2–9 are in the following format: example, continuous flux function, numerical flux
function, grid type.

5.1. Observations

We recall three classical results from the theory of convergence analysis of finite volume schemes for conser-
vation laws of the type (1.1).

(R.1) For a BV initial data, finite volume approximations of conservation laws of the type (1.1) on structured
Cartesian meshes converge with ℎ1/2 rate with respect to 𝐿∞

𝑡 𝐿
1 norm [18], and this result is extended

to nearly Cartesian meshes by Cockburn et al. [6]. For generic meshes the 𝐿∞
𝑡 𝐿

1 convergence rate is
ℎ1/4 ([14], p. 188).

(R.2) The BV seminorm of the finite volume solution grows with a rate not greater than ℎ−1/2 ([14], p. 168).
Further details can be found in [6], p. 1777 and the references therein.

(R.3) For BV initial data finite volume approximations of nonlinear conservations of the type (5.2) converge
with ℎ1/2 rate with respect to 𝐿1(Ω𝑇 ) norm (see Theorem 4 and Remark 1 in [4]).

The 𝐿1 error rates displayed in the tables in this section agree with results (R.1)–(R.3). When the flux is
linear, the mesh is Cartesian (uniform or nonuniform), and (1.1) possesses a smooth solution, the BV seminorm



STRONG BOUNDED VARIATION ESTIMATES 1425

Table 2. Example 5.1, linear, Godunov, Cartesian.

h δ
Error Rate

BV seminorm
L1 L1

5.00E-01 2.50E-01 0.1370 – 20.2
2.50E-01 1.25E-01 0.0719 0.93 23.1
1.25E-01 6.25E-02 0.0382 0.91 30.6
6.25E-02 3.12E-02 0.0198 0.95 35.3
3.12E-02 1.56E-02 0.0101 0.97 37.9

Table 3. Example 5.1, sinusoidal, Godunov, Cartesian.

h δ
Error Rate

BV seminorm
L1 L1

5.00E-01 3.97E-02 0.0332 – 24.2
2.50E-01 1.98E-02 0.0335 −0.01 32.0
1.25E-01 9.94E-03 0.0259 0.37 37.8
6.25E-02 4.97E-03 0.0164 0.65 40.3
3.12E-02 2.48E-03 0.0096 0.78 41.2

Table 4. Example 5.1, linear, Godunov, perturbed Cartesian.

h δ
Error Rate

BV seminorm
L1 L1

5.70E-01 2.85E-01 0.1540 – 19.7
3.01E-01 1.50E-01 0.0876 0.89 27.1
1.52E-01 7.62E-02 0.0465 0.93 33.0
8.40E-02 4.20E-02 0.0261 0.96 36.4
4.21E-02 2.10E-02 0.0133 0.98 38.4

Table 5. Example 5.1, sinusoidal, Godunov, perturbed Cartesian.

h δ
Error Rate

BV seminorm
L1 L1

5.70E-01 4.54E-02 0.0544 – 24.2
3.01E-01 2.40E-02 0.0374 0.58 33.1
1.52E-01 1.21E-02 0.0269 0.48 37.3
8.40E-02 6.68E-03 0.0177 0.70 41.3
4.21E-02 3.35E-03 0.0101 0.81 41.9

increases but remains bounded, see Tables 2 and 3. In Example 5.2, a noticeable reduction in the 𝐿1 rate is
observed due to the discontinuities in the weak solution to (1.1), see Tables 6 and 7. Here also, the BV seminorm
is bounded and increasing.

In Examples 5.1 and 5.2, the behaviour of BV seminorm on perturbed Cartesian grids is similar to that of
Cartesian grids, see Tables 4, 5, 8, and 9. This indicates the possibility of extending the analysis in this article
to perturbed Cartesian grids also.
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Table 6. Example 5.2, linear, Godunov, Cartesian.

h δ
Error Rate

BV seminorm
L1 L1

3.00E+00 9.37E-02 0.4140 – 4.26
1.50E+00 4.68E-02 0.8160 −0.98 5.57
7.50E-01 2.34E-02 0.4740 0.78 6.33
3.75E-01 1.17E-02 0.3700 0.36 7.69
1.87E-01 5.85E-03 0.2870 0.36 8.75

Table 7. Example 5.2, sinusoidal, Godunov, Cartesian.

h δ BV seminorm

3.00E+00 1.49E-02 6.32
1.50E+00 7.46E-03 6.35
7.50E-01 3.73E-03 6.60
3.75E-01 1.86E-03 6.76
1.87E-01 9.32E-04 7.08

Table 8. Example 5.2, linear, Godunov, perturbed Cartesian.

h δ
Error Rate

BV seminorm
L1 L1

3.42E+00 1.06E-01 0.3980 – 4.68
1.81E+00 5.65E-02 0.7240 −0.94 6.23
9.14E-01 2.85E-02 0.4610 0.66 6.48
5.04E-01 1.57E-02 0.3700 0.36 8.77
2.53E-01 7.91E-03 0.2850 0.38 9.51

Table 9. Example 5.2, sinusoidal, Godunov, perturbed Cartesian.

h δ BV seminorm

3.42E+00 1.06E-01 6.32
1.81E+00 5.65E-02 6.54
9.14E-01 2.85E-02 6.70
5.04E-01 1.57E-02 7.57
2.53E-01 7.91E-03 7.28

For conservation laws with fully nonlinear flux, BV seminorm is increasing, however in a bounded fashion,
see Table 10. Table 10 also complements Lemma 8 and Theorem 7 in [4], which provide the boundedness of the
BV seminorm of discrete solutions corresponding to uniform Cartesian grids.

5.2. A remark on strong BV estimate for non-Cartesian grids

In the case of Cartesian mesh, note that the BV rate decreases in magnitude as ℎ decreases and the BV
seminorm stabilises eventually, which agrees with the conclusion of Theorem 2.4. This is also supported by the
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Table 10. Example 5.3 – Fully nonlinear flux and Cartesian grid.

h δ
Error Rate

BV seminorm
L1 L1

5.00E-01 3.97E-02 0.1470 – 2.45
2.50E-01 1.98E-02 0.1080 0.43 3.58
1.25E-01 9.94E-03 0.0748 0.54 4.57
6.25E-02 4.97E-03 0.0474 0.65 5.33
3.12E-02 2.48E-03 0.0280 0.75 5.88

Figure 7. Staggered grid is a modification of a uniform Cartesian grid. Here, width of the
controls volumes in odd levels is half the width of control volumes in even levels.

Table 11. BV seminorms of the finite volume solutions corresponding to (5.3) on staggered
meshes. The parameters used are ℓ = 1 and 𝑇 = 1/4.

h δ BV seminorm

1.00E-01 1.00E-01 3.90
5.00E-02 5.00E-02 5.65
2.50E-02 2.50E-02 6.86
1.25E-02 1.25E-02 9.00
6.25E-03 6.25E-03 11.90

higher values of 𝐿1 rate than the theoretically predicted ones and the fact that the reduced convergence rate
stems from lack of a strong BV estimate (see result (R.1)).

Similar trends can be observed in the case of perturbed Cartesian grids also. These trends indicate there
might be a possible way by which analysis in this article and in the previous works [4] could be extended
to non-Cartesian grids also. Any such uniform estimate on strong BV immediately provides a proof for the
improved convergence rates. However, as of now any analytical proof of a strong BV estimate on meshes
other than nonuniform Cartesian grids is not available in the literature. A strong obstacle in this direction is
the counterexample provided by Després [9]. This article [9] presents an analytical proof that shows the BV
seminorms of finite volume solutions on a staggered grid, see Figure 7, to the problem

𝜕𝑡𝛼+ 𝑢 𝜕𝑥𝛼 = 0, for (𝑥, 𝑦) ∈ (−ℓ, ℓ)2, 0 < 𝑡 < 𝑇
𝛼(𝑡, 𝑥, 𝑦) = 𝛼0(𝑥, 𝑦) for (𝑥, 𝑦) ∈ (−ℓ, ℓ)2,

}︂
(5.3)

with ℓ = 1, 𝑢 = 1, and 𝛼0(𝑥, 𝑦) = 𝐻(𝑥− 1/2), where 𝐻 is the Heaviside step function blows up with an order
greater than ℎ−1/2. This is supported by numerical experiments also. In Table 11 it is evident that the BV
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seminorm is increasing. Considering this result also, the uniform BV estimate on non-Cartesian grids requires
a non-trivial and deeper investigation.

6. Existence result for a ductal carcinoma model

A crucial application of Theorem 2.4 is that it enables us to prove the existence of a weak solution to coupled
problems involving 𝛼 and u, such as (1.2) and (1.3). In this section, we apply Theorem 2.4 to establish the
existence of a solution to the ductal carcinoma in situ problem (1.2). The main idea is to combine a finite
volume discretisation of (1.2a) and semi-discrete variational formulation of (1.2b), and thereby reduce the
interdependence between 𝛼 and u to a semi-discrete relation (𝛼𝑛+1

ℎ ,u𝑛+1
ℎ ) = F (𝛼𝑛

ℎ,u
𝑛
ℎ), where (𝛼𝑛

ℎ,u
𝑛
ℎ) is the

discrete solution at time step 𝑛 and ℎ is the discretisation factor. Then, an inductive argument is used to show
that the time-reconstruct 𝛼ℎ,𝛿, see Definition 2.3, constructed from (𝛼𝑛

ℎ)𝑛≥0 is a function of BV independent of
ℎ and 𝛿. Finally, Helly’s selection theorem, see Theorem A.2i, is invoked to obtain a convergent subsequence of
{𝛼ℎ,𝛿}ℎ,𝛿 and the limit function is proved to be a weak solution of (1.2a).

Initial and boundary conditions

Set Ω = (0, 1) × (0, ℓ) in the sequel. Fix an 𝜀 such that 0 < 𝜀 < (ℓ − 1)/2 and define the auxiliary domain
Ω(𝜀) := (0, 1) × (0, ℓ− 𝜀). Recall that for any 𝐴 ⊂ R

𝑑, the set 𝐴𝑇 is defined by 𝐴𝑇 = (0, 𝑇 ) ×𝐴.
The initial concentration of the tumour cells and nutrient are 𝛼(0,x) = 𝛼0(x) and 𝑐(0,x) = 𝑐0(x), respec-

tively. We assume that 𝛼0|(0,1)×(1,ℓ) = 0, which means the initial tumour occupies only a subset of (0, 1)× (0, 1)
and later it spreads throughout the duct Ω as time evolves. In Proposition 6.7, we obtain a time 𝑇∗ such that
the concentration of tumour cells remains zero for every (𝑡, 𝑥, 𝑦) ∈ (0, 𝑇∗) × (0, 1) × (ℓ − 2𝜖, 1). This tempo-
ral restriction is imperative as it enables us to obtain a uniform BV estimate on the finite volume solutions
from (6.10). The boundary conditions on (1.2b) and (1.2c) are as follows:

on 𝑥 ∈ {0, 1} : u · n = 0, ∇𝑣 · n = 0, ∇𝑐 · n = 0, (6.1)

on 𝑦 = 0 : u · n = 0, ∇𝑢 · n = 0, ∇𝑐 · n = 0, and (6.2)

on 𝑦 = ℓ : u · τ = 0, ∇𝑣 · n = 0, ∇𝑢 · τ = 𝛾, 𝑐 = 0, 𝑝 = 0, (6.3)

where τ and n are the unit tangent and unit normal vectors to 𝜕Ω, respectively. The boundary condition 𝑐 = 0
at 𝑦 = 0 used in [15] is replaced by ∇𝑐 · n = 0 in (6.2) and this indicates that nutrient cannot enter or leave
the interior of duct through the duct wall at 𝑦 = 0. A supplementary condition ∇𝑢 · τ = 𝛾 is addd in (6.3)
and this manifests from (1.2c) and the boundary condition 𝑐 = 0 at 𝑦 = ℓ. These changes are reasonable from
the modelling perspective as well and aid in obtaining the minimal regularity on u and 𝑐 that guarantees the
convergence of discrete solutions.

The Sobolev spaces 𝑊𝑚,𝑝(Ω), 𝐻𝑚(Ω) := 𝑊𝑚,2(Ω), and 𝐿𝑝(Ω), where 1 ≤ 𝑝 ≤ ∞, are defined in the
standard way. Set the product spaces W𝑚,𝑝(Ω) := 𝑊𝑚,𝑝(Ω)×𝑊𝑚,𝑝(Ω) and H𝑚(Ω) := 𝐻𝑚(Ω)×𝐻𝑚(Ω). For

u = (𝑢1, . . . , 𝑢𝑑) ∈ Π𝑑
𝑖=1𝑊

𝑚,𝑝(Ω), 𝑑 ∈ {1, 2}, define the norm ‖u‖𝑚,𝑝,Ω :=
∑︀𝑑

𝑖=1

∑︀
|β|≤𝑚 ‖𝜕β𝑢𝑖‖𝐿p(Ω), where

β ∈ N
𝑑 is a multi-index. Let 𝑋loc(Ω) := {𝑣 ∈ 𝐿2(Ω) : 𝑣|𝜔 ∈ X(𝜔) ∀𝜔 ⊂⊂ Ω}, where X = 𝐻𝑚 or X = H𝑚.

Define the Hilbert spaces H and 𝑉 by

H :=

{︂
u := (𝑢, 𝑣) ∈H1(Ω)

u · n = 0 at 𝑥 = 0, 𝑥 = 1, 𝑦 = 0,

and u · τ = 0 at 𝑦 = ℓ

}︂
and

𝑉 := {𝑣 ∈ 𝐻1(Ω) : 𝑣 = 0 at 𝑦 = ℓ}.

For ease of notations, the explicit dependence of variables (𝛼,u, 𝑝, 𝑐) on time is skipped. For instance, in (6.5),
u stands for u(𝑡, ·).

Definition 6.1 (Weak solution). A weak solution of the problem (1.2a)–(1.2c) is a four tuple (𝛼,u, 𝑝, 𝑐) such
that the following conditions hold:
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(1) For ∇𝑡,x = (𝜕𝑡,∇), the tumour cell concentration 𝛼 ∈ 𝐿∞(Ω𝑇 ) is such that, for every 𝜗 ∈ C∞
𝑐 ([0, 𝑇 ) × Ω),

ˆ

ΩT

((𝛼,u𝛼) · ∇𝑡,x𝜗+ 𝛾𝛼(1 − 𝑐)𝜗) dxd𝑡+

ˆ

Ω

𝛼0(x)𝜗(0,x) dx = 0. (6.4)

(2) The velocity–pressure system is such that u ∈ 𝐿2(0, 𝑇 ;H), 𝑝 ∈ 𝐿2(0, 𝑇 ;𝐿2(Ω)), and for every ψ :=
(𝜓1, 𝜓2) ∈ 𝐿2(0, 𝑇 ;H), 𝑤 ∈ 𝐿2(0, 𝑇 ;𝐿2(Ω)),

ˆ 𝑇

0

𝜇 a(u,ψ) dx−
ˆ

ΩT

𝑝 div(ψ) dxd𝑡 =

ˆ 𝑇

0

ˆ

𝑦=ℓ

𝛾𝜇

3
𝜓2 d𝑠d𝑡, and (6.5)

ˆ

ΩT

div(u)𝑤 dxd𝑡 =

ˆ

ΩT

𝛾(1 − 𝑐)𝑤 dxd𝑡,

where a(v,w) :=
´

Ω
(∇v : ∇w +

1

3
div(v)div(w)) dx for v,w ∈H1(Ω).

(3) The variable 𝑐 ∈ 𝐿2(0, 𝑇 ;𝑉 ) satisfies, for every 𝜙 ∈ 𝐿2(0, 𝑇 ;𝑉 )

ˆ 𝑇

0

ˆ

Ω

∇𝑐 · ∇𝜙 dxd𝑡 =

ˆ 𝑇

0

ˆ

Ω

𝑄𝛼𝜙dxd𝑡. (6.6)

We define a semi-discrete scheme for (1.2a)–(1.2c), wherein the tumour cell concentration is discretised using
a finite volume method, and velocity–pressure and nutrient concentration are obtained from the corresponding
weak formulations and boundary conditions (6.1)–(6.3).

Semi-discrete scheme

Let 𝑋ℎ × 𝑌ℎ be a uniform grid on Ω(𝜀) with ℎ < 𝜀 and 0 = 𝑡0 < · · · < 𝑇𝑁 = 𝑇 be a uniform temporal
discretisation with 𝛿 = 𝑡𝑛+1 − 𝑡𝑛. Set 𝜇 = 𝛿/ℎ. Construct a finite sequence of functions (𝛼𝑛

ℎ,u
𝑛
ℎ, 𝑝

𝑛
ℎ, 𝑐

𝑛
ℎ){0≤𝑛<𝑁}

on Ω as follows. For 𝑛 = 0, define 𝛼0
ℎ : Ω → R by 𝛼0

ℎ := 𝛼0
𝑖,𝑗 , where 𝛼0

𝑖,𝑗 :=
ffl

𝐾i,j
𝛼0(x) dx. For 0 ≤ 𝑛 < 𝑁 ,

define the iterates as follows.

(1) The function 𝑐𝑛ℎ ∈ 𝑉 is defined by, for every 𝜙 ∈ 𝑉 it holds
ˆ

Ω

(∇𝑐𝑛ℎ · ∇𝜙−𝑄𝛼𝑛
ℎ𝜙) dx = 0. (6.7)

(2) The functions (u𝑛
ℎ, 𝑝

𝑛
ℎ) ∈ H × 𝐿2(Ω) is defined by, for every (ϕ, 𝑞) ∈ H × 𝐿2(Ω), setting ϕ = (𝜙1, 𝜙2) it

holds

𝜇 a(u𝑛
ℎ,ϕ) −

ˆ

Ω

𝑝𝑛
ℎ div(ϕ) dx =

ˆ

𝑦=ℓ

𝛾𝜇

3
𝜙2 d𝑠, and (6.8)

ˆ

Ω

div(u𝑛
ℎ)𝑞 dx =

ˆ

Ω

𝛾(1 − 𝑐𝑛ℎ) 𝑞 dx. (6.9)

(3) Define 𝛼𝑛+1
ℎ as the trivial extension of ̂︀𝛼𝑛+1

ℎ : Ω(𝜀) → R, where ̂︀𝛼𝑛+1
ℎ := ̂︀𝛼𝑛

𝑖,𝑗 on 𝐾𝑖,𝑗 = (𝑥𝑖−1/2, 𝑥𝑖+1/2) ×
(𝑦𝑗−1/2, 𝑦𝑗+1/2) is obtained by

̂︀αn+1
i,j = ̂︀αn

i,j − µ
[︁
( ̂︀Fi+1/2,j − ̂︀Fi−1/2,j) − ( ̂︀Gi,j+1/2 + ̂︀Gi,j−1/2)

]︁
+ γδ

 

Ki,j

̂︀αn
i,j(1 − c

n
h) dx, (6.10)

where

̂︀𝐹𝑛
𝑖−1/2,𝑗 := 𝑢𝑛 +

𝑖−1/2,𝑗𝛼
𝑛
𝑖−1,𝑗 − 𝑢𝑛−

𝑖−1/2,𝑗𝛼
𝑛
𝑖,𝑗 , ̂︀𝐺𝑛

𝑖,𝑗−1/2 := 𝑣𝑛+
𝑖,𝑗−1/2𝛼

𝑛
𝑖,𝑗−1 − 𝑣𝑛−

𝑖,𝑗−1/2𝛼
𝑛
𝑖,𝑗 ,

𝑢𝑛
𝑖−1/2,𝑗 =

 𝑡n+1

𝑡n

 𝑦j+1/2

𝑦j−1/2

𝑢𝑛
ℎ(𝑥𝑖−1/2, 𝑠) d𝑠d𝑡, and 𝑣𝑛

𝑖,𝑗−1/2 =

 𝑡n+1

𝑡n

 𝑥i+1/2

𝑥i−1/2

𝑣𝑛
ℎ(𝑠, 𝑦𝑗−1/2) d𝑠d𝑡.
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6.1. Compactness

The functions 𝛼ℎ,𝛿, uℎ,𝛿, 𝑝ℎ,𝛿, and 𝑐ℎ,𝛿 are the time-reconstructs, see Definition 2.3, corresponding to the
family of functions (𝛼𝑛

ℎ){𝑛≥0}, (u𝑛
ℎ){𝑛≥0}, (𝑝𝑛

ℎ){𝑛≥0}, and (𝑐𝑛ℎ){𝑛≥0}, respectively.

Theorem 6.2 (Compactness). Fix a positive number 𝛼𝑀 > 𝑎0 = supΩ |𝛼0|. Assume that 𝛼0|(0,1)×(1,ℓ) = 0 and
the following property on the discretisation factors 𝛿 and ℎ:

C
𝜀
ICFL ≤ 𝛿

ℎ
≤ 𝛾 C𝜀 (1 +𝑄C

√
2ℓ𝛼𝑀 ). (6.11)

where the constants C > 0 and C𝜀 > 0 are specified in Lemmas 6.5 and 6.6, respectively. Here, C𝜀 depends on 𝜀.
The inverse CFL constant 0 < C 𝜀

ICFL < 𝛾 C𝜀 (1+𝑄C
√

2ℓ𝛼𝑀 ) depends on 𝜀 but is independent of ℎ and 𝛿. Then,
there exists a finite time 𝑇∗ < ∞, a subsequence – denoted with the same indices – of the family of functions
{(𝛼ℎ,𝛿,uℎ,𝛿, 𝑝ℎ,𝛿, 𝑐ℎ,𝛿)}ℎ,𝛿 obtained from the semi-discrete scheme, and a four tuple of functions (𝛼,u, 𝑝, 𝑐) such
that

𝛼 ∈ BV(Ω𝑇∗
), u ∈ 𝐿2(0, 𝑇∗;H), 𝑝 ∈ 𝐿2(0, 𝑇∗;𝐿

2(Ω)), 𝑐 ∈ 𝐿2(0, 𝑇∗;𝑉 )

and as ℎ, 𝛿 → 0

– 𝛼ℎ,𝛿 → 𝛼 almost everywhere and in 𝐿∞ weak−⋆ on Ω𝑇∗
, uℎ,𝛿 ⇀ u weakly in 𝐿2(0, 𝑇∗;H),

– 𝑝ℎ,𝛿 ⇀ 𝑝 weakly in 𝐿2(0, 𝑇∗;𝐿
2(Ω)), and 𝑐ℎ,𝛿 ⇀ 𝑐 weakly in 𝐿2(0, 𝑇∗;𝑉 ).

Remark 6.3 (Necessity of strong BV estimate on 𝛼ℎ,𝛿). The uniform boundedness on 𝛼ℎ,𝛿 directly yields a
subsequence that converges in weak-* topology. However, this is not sufficient to show that the second term
in the right hand side of (6.10) converges weakly. It is shown that 𝑐ℎ,𝛿 converges weakly in 𝐿2(0, 𝑇∗;𝐻

1(Ω)).
Therefore, to establish 𝛼ℎ,𝛿(1 − 𝑐ℎ,𝛿) converges weakly to 𝛼(1 − 𝑐), the strong convergence of 𝛼ℎ,𝛿 is required.
We employ Theorem A.2i to extract a subsequence of {𝛼ℎ,𝛿} that converges almost everywhere and in 𝐿1(Ω𝑇∗

)
for which a strong uniform BV estimate is necessary.

The proof of Theorem 6.2 is achieved over multiple steps, which are provided below. We establish:

– in Lemma 6.5, 𝑐𝑛ℎ has 𝑊 2,𝑝(Ω) regularity, which yields ‖𝑐ℎ‖1,∞,Ω estimate,
– in Lemma 6.6, u𝑛

ℎ has H3
loc(Ω) regularity, which yields local ‖u𝑛

ℎ‖1,∞,Ω estimate,
– in Proposition 6.7, the finite volume solution 𝛼ℎ,𝛿 is bounded, and
– in Proposition 6.8, Corollary 3.5 and the above steps are employed to prove that 𝛼ℎ,𝛿 is a function with BV.

Define the extended functions 𝑐𝑛ℎ, u𝑛
ℎ := (𝑢𝑛

ℎ, 𝑣
𝑛
ℎ), and 𝑝𝑛

ℎ on Ωext := (−1, 2) × (−ℓ, ℓ) using even and odd
reflections as follows. Let 𝑎 ∈ {0, 1, 2} and 𝑏 ∈ {0, ℓ}. Then, on (𝑎− 1, 𝑎)× (𝑏− ℓ, 𝑏) set (̃︀𝑥, ̃︀𝑦) := (𝑥(−2𝑎2 +4𝑎−
1) + (𝑎2 − 𝑎), (2𝑏− ℓ)𝑦/ℓ) and define

𝛼𝑛
ℎ(𝑥, 𝑦) := 𝛼𝑛

ℎ(̃︀𝑥, ̃︀𝑦), 𝑐𝑛ℎ(𝑥, 𝑦) := 𝑐𝑛ℎ(̃︀𝑥, ̃︀𝑦), 𝑝𝑛
ℎ(𝑥, 𝑦) := 𝑝𝑛

ℎ(̃︀𝑥, ̃︀𝑦), and
𝑢𝑛

ℎ(𝑥, 𝑦) := (−2𝑎2 + 4𝑎− 1)𝑢𝑛
ℎ(̃︀𝑥, ̃︀𝑦), 𝑣𝑛

ℎ(𝑥, 𝑦) := (2𝑏/ℓ− 1)𝑣𝑛
ℎ(̃︀𝑥, ̃︀𝑦).

}︂
(6.12)

In (6.12), we have a compact representation of all reflections employed to construct the extended functions. A
pictorial representation of (6.12) is provided in Figure 8 for clarity. We introduced three spatial domains so far
and relations between them are represented in Figure 9.

Remark 6.4 (Auxiliary domain Ω(𝜀)). The internal regularity result, see Theorem A.2iv, only grants u𝑛
ℎ ∈

H3(Ω(𝜀)). The discontinuity in normal gradient of even reflection of 𝑐 about 𝑦 = ℓ disables extending this
local regularity of u𝑛

ℎ up to 𝑦 = ℓ. As a result, it is necessary to keep Ω(𝜀) to have enough regularity of u𝑛
ℎ to

move the analysis forward. We use the Sobolev embedding theorem to obtain u𝑛
ℎ ∈H3(Ω(𝜀)) →˓W 1,∞(Ω(𝜀)),

from which a BV estimate on 𝛼ℎ,𝛿|Ω(𝜀), see Corollary 3.5, is derived. By imposing a restriction on time, the BV
regularity of 𝛼ℎ,𝛿 is extended to Ω.
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Figure 8. Extended functions on the rectangle (−1, 2) × (−ℓ, ℓ).

Lemma 6.5. For every 𝑛 ≥ 0, (6.7) has a unique solution 𝑐𝑛ℎ ∈ 𝑉 . Moreover, it holds 𝑐𝑛ℎ ∈ 𝐻2
loc(Ωext),

𝑐𝑛ℎ ∈ 𝑊 2,𝑝(Ω) for any 𝑝 ≥ 2, and ‖𝑐𝑛ℎ‖2,𝑝,Ω ≤ C𝑄(2ℓ)1/𝑝‖𝛼𝑛
ℎ‖0,∞,Ω, where C > 0 is a constant that depends

only on Ω.

Proof. An application of Lax–Milgram theorem ensures the existence of a unique 𝑐𝑛ℎ ∈ 𝑉 that satisfies (6.7).
Observe that 𝑐𝑛ℎ ∈ 𝐻ext := {𝑣 ∈ 𝐻1(Ωext) : 𝑣 = 0 at 𝑦 = ℓ,−ℓ}. Apply change of variables to establish
´

Ωext
∇𝑐𝑛ℎ · ∇𝑣 dx = 𝑄

´

Ωext
𝛼𝑛

ℎ𝑣 dx for every 𝑣 ∈ 𝐻ext. Therefore, Theorem A.2ii yields 𝑐𝑛ℎ ∈ 𝐻2
loc(Ωext).

The 𝑊 2,𝑝(Ω) regularity of 𝑐𝑛ℎ is obtained by an application of odd reflection on 𝑐𝑛ℎ about 𝑦 = ℓ. Set Λ :=
(0, 1) × (0, 2ℓ). Define the function 𝑐𝑛ℎ : Λ → R by

̂︀𝑐𝑛ℎ :=

{︂
𝑐𝑛ℎ(𝑥, 𝑦) if 𝑦 ≤ ℓ, and

−𝑐𝑛ℎ(𝑥, 2 − 𝑦) if 𝑦 > ℓ.

Let 𝑓(𝑥, 𝑦) = 𝑄𝛼𝑛
ℎ(𝑥, 𝑦) if 𝑦 ≤ ℓ and 𝑓(𝑥, 𝑦) = −𝑄𝛼𝑛

ℎ(𝑥, 2 − 𝑦) if 𝑦 ≥ ℓ. Then, note that ̂︀𝑐𝑛ℎ ∈ 𝐻1(Λ) and
´

Λ
∇̂︀𝑐𝑛ℎ · ∇𝑣 dx =

´

Λ
𝑓𝑣 dx holds for every 𝑣 ∈ 𝐻1(Λ). Hence, Theorem A.2iii shows that ̂︀𝑐𝑛ℎ ∈ 𝑊 2,𝑝(Λ), 𝑝 ≥ 1

and in particular, ‖𝑐𝑛ℎ‖2,𝑝,Ω ≤ C (2ℓ)1/𝑝𝑄‖𝛼𝑛
ℎ‖0,∞,Ω. �

Lemma 6.6. For every 𝑛 ≥ 0, there exists a unique (u𝑛
ℎ, 𝑝

𝑛
ℎ) ∈ H × 𝐿2(Ω) that satisfies (6.8)–(6.9) for every

(ϕ, 𝑞) ∈H × 𝐿2(Ω). Moreover, it holds u𝑛
ℎ ∈H3

loc(Ωext) and for each 𝜀 > 0

‖u𝑛
ℎ‖3,2,Ω(𝜖) ≤ 𝛾 C𝜀 (1 + C𝑄

√
2ℓ‖𝛼𝑛

ℎ‖0,∞,Ω),

where C𝜀 > 0 depends only on 𝜀.

Proof. The existence of a unique solution (u𝑛
ℎ, 𝑝

𝑛
ℎ) ∈ H × 𝐿2(Ω) follows from Ladyshenzkaya–Babuska–Brezzi

theorem ([1], p. 227). Set the space

Hext :=

{︂
u := (𝑢, 𝑣) ∈H1(Ωext)

u · n = 0 at 𝑥 = −1, 𝑥 = 2,

and u · τ = 0 at 𝑦 = ℓ, 𝑦 = −ℓ

}︂
.

Then, observe that the extended function (u𝑛
ℎ, 𝑝

𝑛
ℎ) belongs to Hext × 𝐿2(Ωext) and satisfies for every (ϕ, 𝑞) ∈

Hext × 𝐿2(Ωext)

𝜇

ˆ

Ωext

(∇u𝑛
ℎ : ∇ϕ+

1

3
div(u𝑛

ℎ)div(ϕ)) dx−
ˆ

Ωext

𝑝𝑛
ℎ div(ϕ) dx =

ˆ

𝑦=ℓ,−ℓ

𝛾𝜇

3
𝜙2 d𝑠, and
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Figure 9. Relationship with domains.

ˆ

Ωext

div(u𝑛
ℎ)𝑞 dx =

ˆ

Ωext

𝛾(1 − 𝑐𝑛ℎ) 𝑞 dx.

Since Lemma 6.5 yields 𝛾(1 − 𝑐𝑛ℎ) ∈ 𝐻2
loc(Ωext), apply Theorem A.2iv to conclude the proof. �

Lemmas 6.5 and 6.6 are crucial in obtaining the supremum norm estimates on 𝑐𝑛ℎ and div(u𝑛
ℎ) on Ω(𝜀). Since

𝑐𝑛ℎ ∈𝑊 2,𝑝(Ω) from Lemma 6.5 and u𝑛
ℎ ∈H3(Ω(𝜀)), the Sobolev embedding theorem with 𝑝 > 2 yields

‖𝑐𝑛ℎ‖1,∞,Ω . ‖𝑐𝑛ℎ‖2,𝑝,Ω ≤ C𝑄(2ℓ)1/𝑝‖𝛼𝑛
ℎ‖0,∞,Ω, and (6.13)

‖u𝑛
ℎ‖1,∞,Ω(𝜀) . ‖u𝑛

ℎ‖3,2,Ω(𝜀) ≤ 𝛾 C𝜀 (1 + C𝑄
√

2ℓ‖𝛼𝑛
ℎ‖0,∞,Ω). (6.14)

Proposition 6.7. Fix a positive number 𝛼𝑀 > 𝑎0. There exists a finite time 𝑇∗ > 0 such that for every 𝑡 ≤ 𝑇∗,
supΩ |𝛼ℎ,𝛿(𝑡, ·)| ≤ 𝛼𝑀 holds.

Proof. Step 1. The proof employs strong induction on the time index 𝑛. Since 𝑎0 < 𝛼𝑀 , the base case holds.
To establish the inductive case, assume that supΩ(𝜀) |𝛼ℎ,𝛿(𝑡𝑘, ·)| ≤ 𝛼𝑀 for every 𝑘 ≤ 𝑛. We establish that
supΩ(𝜀) |𝛼ℎ,𝛿(𝑡𝑛+1, ·)| ≤ 𝛼𝑀 holds for every 𝑡𝑛+1 < 𝑇1, for a fixed time 𝑇1 > 0.

Step 2. Recall ‖𝑣‖𝐿1
t 𝐿∞(Ω(𝜀)T ) :=

´ 𝑇

0
‖𝑣(𝑡, ·)‖𝐿∞(Ω(𝜀)) d𝑡. The results in (6.14) and (6.11) imply the CFL con-

dition in Theorem 2.4. Then, Proposition 3.1 applied to (6.10) yields, for any finite time 𝑡 < 𝑇

‖𝛼ℎ,𝛿(𝑡, ·)‖𝐿∞(Ω(𝜀)) ≤ B
(︁
𝑎0 + ‖div(u𝑛

ℎ)‖𝐿1
t 𝐿∞(Ω(𝜀)T )

)︁
, (6.15)

where B = exp(‖div(u𝑛
ℎ)‖𝐿1

t 𝐿∞(Ω(𝜀)T ) + 𝛾(𝑇 + ‖𝑐𝑛ℎ‖𝐿1
t 𝐿∞(Ω(𝜀)T ))). Then (6.13)–(6.15) imply

‖𝛼ℎ,𝛿(𝑡, ·)‖𝐿∞(Ω(𝜀)) ≤ F (𝑇 ), where

F (𝑇 ) := exp
(︁
𝑇𝛾 C𝜀 (1 + C𝑄

√
2ℓ𝛼𝑀 ) + 𝑇𝑄C (2ℓ)1/𝑝𝛼𝑀

)︁(︁
𝑎0 + 𝑇𝛾 C𝜀 (1 +𝑄C

√
2ℓ𝛼𝑀 )

)︁
.

Since F (0) − 𝛼𝑀 < 0 and F is a nonnegative and monotonically increasing function, there exists a finite
time 𝑇1 such that ‖𝛼ℎ,𝛿(𝑡, ·)‖𝐿∞(Ω(𝜀)) ≤ F (𝑇1) ≤ 𝛼𝑀 for every 𝑡 ∈ [0, 𝑇1].

Step 3. Next, we need to show that 𝛼ℎ,𝛿 is bounded on Ω∖Ω(𝜀). Note that 𝛼0(𝑥, 𝑦) = 0 for 𝑦 ≥ 1. The finite
speed of propagation of the scheme (6.10) on Ω(𝜀) and (6.11) yield 𝛼ℎ,𝛿 = 0 on (0, 𝑇2) × (ℓ− 2𝜀, ℓ), where
𝑇2 := (ℓ − 2𝜀 − 1)/(𝛾 C𝜀 (1 + 𝑄C

√
2ℓ𝛼𝑀 ). Since ℎ < 𝜀, 𝛼𝑛

𝑖,𝑗 = 0 for every 𝐾𝑖,𝑗 ⊂ (ℓ − 2𝜀, ℓ), see Figure 9.
Define 𝑇∗ = min(𝑇1, 𝑇2) to obtain the conclusion.

�
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Observe that for every (𝑡,x, 𝑧) ∈ (0, 𝑇∗)×Ω× (−𝛼𝑀 , 𝛼𝑀 ), the function S(𝑡,x, 𝑧) = 𝛾(1− 𝑐ℎ,𝛿)𝑧 is Lipschitz
continuous with respect to 𝑧, uniformly with respect to 𝑡 and x and Lipschitz continuous with respect to x,
uniformly with respect to 𝑡 and 𝑧. This is a direct consequence of (6.13).

Proposition 6.8. The function 𝛼ℎ,𝛿 : (0, 𝑇∗)×Ω → R has bounded variation. Moreover, on (0, 𝑇∗)×Ω it holds
|𝛼ℎ,𝛿|BVx,y,t

≤ CBV, where CBV is independent of ℎ and 𝛿.

The proof of Proposition 6.8 follows from an application of Corollary 3.5, the Lipschitz continuity of 𝛾(1 −
𝑐ℎ,𝛿(𝑡,x))𝑧 of (𝑡,x, 𝑧) on (0, 𝑇∗)×Ω× (−𝛼𝑀 , 𝛼𝑀 ), and the fact that 𝛼ℎ,𝛿 = 0 on (0, 1)× (ℓ−2𝜖, ℓ), see Figure 9.

Remark 6.9. The regularity uℎ,𝛿(𝑡𝑛, ·) ∈ H3(Ω(𝜀)) yields |div(uℎ,𝛿)|𝐿1
tBVx,y

≤ C in the assumption (AS.3).
Here, an even stronger condition max(|𝜕𝑥𝑢ℎ,𝛿|𝐿1

tBVx,y
, |𝜕𝑦𝑣ℎ,𝛿|𝐿1

tBVx,y
) ≤ C with uℎ,𝛿 = (𝑢ℎ,𝛿, 𝑣ℎ,𝛿) holds. This

simplifies the proof of Proposition 6.8 as the splitting of 𝐾𝑓
𝑖,𝑗 into 𝐾𝑓,1

𝑖,𝑗 +𝐾𝑓,2
𝑖,𝑗 in step 4 of Proposition 3.2 is not

needed. Here, 𝐾𝑓
𝑖,𝑗 is bounded rather by |𝜕𝑥𝑢ℎ,𝛿|𝐿1

tBVx,y
and |𝛼ℎ,𝛿|𝐿1

tBVx,y
than |div(uℎ,𝛿)|𝐿1

tBVx,y
, see (3.4b).

However, Theorem 2.4, from which the proof of Proposition 6.8 follows, only demands the weaker assumption
|div(uℎ,𝛿)|𝐿1

tBVxy
≤ C . Therefore, Theorem 2.4 provides a more generic setting that also encompasses the ductal

carcinoma in situ model.

Proof of Theorem 6.2. Recall that Ω𝑇∗
= (0, 𝑇∗)×Ω. Proposition 6.8 shows that 𝛼ℎ,𝛿 ∈ BV(Ω𝑇∗

). Therefore, an
application of Theorem A.2i provides the existence of subsequence of {𝛼ℎ,𝛿} – assigned with the same indices –
and a function 𝛼 ∈ BV(Ω𝑇∗

) such that 𝛼ℎ,𝛿 → 𝛼 almost everywhere and 𝐿∞ weak−⋆ on Ω𝑇∗
. Lemmas 6.5 and

6.6 show that 𝑐ℎ,𝛿 ∈ 𝐿2(0, 𝑇∗;𝑉 ) and (uℎ,𝛿, 𝑝ℎ,𝛿) ∈ 𝐿2(0, 𝑇∗;H) × 𝐿2(0, 𝑇∗;𝐿
2(Ω)) for every ℎ and 𝛿. Observe

that 𝐿2(0, 𝑇∗;𝑉 ) and 𝐿2(0, 𝑇∗;H) × 𝐿2(0, 𝑇∗;𝐿
2(Ω)) are Hilbert spaces. Hence, there exist subsequences of

{𝑐ℎ,𝛿} and {(uℎ,𝛿, 𝑝ℎ,𝛿)}, and functions 𝑐 ∈ 𝐿2(0, 𝑇∗;𝑉 ) and (u, 𝑝) ∈ 𝐿2(0, 𝑇∗;H) × 𝐿2(0, 𝑇∗;𝐿
2(Ω)) such that

𝑐ℎ,𝛿 ⇀ 𝑐 weakly in 𝐿2(0, 𝑇∗;𝑉 ) and (uℎ,𝛿, 𝑝ℎ,𝛿) ⇀ (u, 𝑝) weakly in 𝐿2(0, 𝑇∗;H) × 𝐿2(0, 𝑇∗;𝐿
2(Ω)). �

6.2. Convergence

Theorem 6.10 (Convergence). Let (𝛼,u, 𝑝, c) be a limit of any subsequence of the family of functions
{(𝛼ℎ,𝛿,uℎ,𝛿, 𝑝ℎ,𝛿, 𝑐ℎ,𝛿)}ℎ,𝛿 obtained from the semi-discrete scheme in the sense of Theorem 6.2. Then, (𝛼,u, 𝑝, c)
is a solution to the problem (1.2a)–(1.2c) for the finite time 𝑇∗ <∞.

Proof of Theorem 6.10. The proof of Theorem 6.10 has two steps.

Step 1 (Convergence of tumour cell concentration). Let 𝛼 : Ω𝑇∗
→ R be a limit provided by Theorem 6.2 such

that 𝛼ℎ,𝛿 → 𝛼 almost everywhere in Ω𝑇∗
. Then, we show that 𝛼 satisfies (6.4) for every 𝜗 ∈ C∞

𝑐 ([0, 𝑇∗)×Ω).
Set 𝜙 ∈ C∞

𝑐 ([0, 𝑇∗) × Ω) and 𝑁∗ = 𝑇∗/𝛿. For ease of notations, let 𝜙(𝑡, ·) denote its trivial extension on
R

2, for every 𝑡 ≥ 0. Multiply (6.10) by ℎ2𝜗𝑛
𝑖,𝑗 , 𝜗

𝑛
𝑖,𝑗 :=

´

𝐾i,j
𝜗(𝑡𝑛, ·) dx and sum over the indices to obtain

𝑇1 + 𝑇 𝑥
2 + 𝑇 𝑦

2 = 𝑇3, where

𝑇1 := ℎ2
𝑁∗−1∑︁

𝑛=0

𝐼∑︁

𝑖=0

𝐽∑︁

𝑗=0

(︀
𝛼𝑛+1

𝑖,𝑗 − 𝛼𝑛
𝑖,𝑗

)︀
𝜗𝑛

𝑖,𝑗 ,

𝑇 𝑥
2 := ℎ2𝛿

𝑁∗−1∑︁

𝑛=0

𝐼∑︁

𝑖=0

𝐽∑︁

𝑗=0

(︁
𝑢𝑛 +

𝑖+1/2,𝑗𝛼
𝑛
𝑖,𝑗 − 𝑢𝑛−

𝑖+1,𝑗𝛼
𝑛
𝑖+1/2,𝑗 − 𝑢𝑛 +

𝑖−1/2,𝑗𝛼
𝑛
𝑖−1,𝑗 + 𝑢𝑛−

𝑖−1/2,𝑗𝛼
𝑛
𝑖,𝑗

)︁
𝜗𝑛

𝑖,𝑗 ,

𝑇 𝑦
2 := ℎ2𝛿

𝑁∗−1∑︁

𝑛=0

𝐼∑︁

𝑖=0

𝐽∑︁

𝑗=0

(︁
𝑣𝑛 +

𝑖,𝑗+1/2𝛼
𝑛
𝑖,𝑗 − 𝑣𝑛−

𝑖,𝑗+1/2𝛼
𝑛
𝑖,𝑗+1 − 𝑣𝑛 +

𝑖,𝑗−1/2𝛼
𝑛
𝑖,𝑗−1 + 𝑣𝑛−

𝑖,𝑗−1/2𝛼
𝑛
𝑖,𝑗

)︁
𝜗𝑛

𝑖,𝑗 , and

𝑇3 := ℎ2𝛿

𝑁∗−1∑︁

𝑛=0

𝐼−1∑︁

𝑖=0

𝐽−1∑︁

𝑗=0

𝛾𝜗𝑛
𝑖,𝑗

ˆ 𝑡n+1

𝑡n

 

𝐾i,j

𝛼ℎ,𝛿(1 − 𝑐ℎ,𝛿) dx,d𝑡.

Define the piecewise constant function 𝛼0
ℎ|𝐾i,j

:=
ffl

𝐾i,j
𝛼0(x) dx for 0 ≤ 𝑖 ≤ 𝐼 and 0 ≤ 𝑗 ≤ 𝐽 . Since 𝜗𝑁∗

𝑖,𝑗 = 0
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for all 𝑖, 𝑗, use discrete integration by parts A.1ii to arrive at

𝑇1 = −ℎ2
𝑁∗−1∑︁

𝑛=0

𝐼∑︁

𝑖=0

𝐽∑︁

𝑗=0

(︀
𝜗𝑛+1

𝑖,𝑗 − 𝜗𝑛
𝑖,𝑗

)︀
𝛼𝑛+1

𝑖,𝑗 −
ˆ

Ω

𝛼0
ℎ(x)𝜗(0,x) dx. (6.16)

A direct calculation shows the first term in the right hand side of (6.16) is equal to

−
𝑁∗−1∑︁

𝑛=0

𝐼∑︁

𝑖=0

𝐽∑︁

𝑗=0

𝛼𝑛+1
𝑖,𝑗

ˆ 𝑡n+1

𝑡n

ˆ

𝐾i,j

𝜕𝑡𝜗(𝑡,x) dxd𝑡 = −
ˆ 𝑇∗+𝛿

𝛿

ˆ

Ω

𝛼ℎ,𝛿(𝑡,x)𝜕𝑡𝜗(𝑡− 𝛿,x) dxd𝑡.

Note that 𝛼ℎ,𝛿 → 𝛼 almost everywhere (see Thm. 6.2) as ℎ, 𝛿 → 0. Then, apply Lebesgue’s domi-
nated convergence theorem to show that the first term in the right hand side of (6.16) converges to
−
´

ΩT∗

𝛼(𝑡,x)𝜕𝑡𝜗(𝑡,x) d𝑡dx. Since 𝛼0
ℎ → 𝛼0 in 𝐿2(Ω), the second term in the right hand side of (6.16)

converges to −
´

Ω
𝛼0(x)𝜗(0,x) dx.

The convergence of 𝑇 𝑦
2 is shown next. The steps for 𝑇 𝑥

2 follow similar steps. An application A.1ii on 𝑇 𝑦
2 leads

to

𝑇 𝑦
2 = 𝛿ℎ2

𝑁∗−1∑︁

𝑛=0

𝐼∑︁

𝑖=0

𝐽∑︁

𝑗=0

𝜗𝑛
𝑖,𝑗

(︂
|𝑣𝑛

𝑖,𝑗+1/2|
𝛼𝑛

𝑖,𝑗 − 𝛼𝑛
𝑖,𝑗+1

2
− |𝑣𝑛

𝑖,𝑗−1/2|
𝛼𝑛

𝑖,𝑗−1 − 𝛼𝑛
𝑖,𝑗

2

)︂

+ 𝛿ℎ2
𝑁∗−1∑︁

𝑛=0

𝐼∑︁

𝑖=0

𝐽∑︁

𝑗=0

𝜗𝑛
𝑖,𝑗

(︂
𝑣𝑛

𝑖,𝑗+1/2

𝛼𝑛
𝑖,𝑗 + 𝛼𝑛

𝑖,𝑗+1

2
− 𝑣𝑛

𝑖,𝑗−1/2

𝛼𝑛
𝑖,𝑗−1 + 𝛼𝑛

𝑖,𝑗

2

)︂
=: 𝑇21 + 𝑇22.

Set 𝛼𝑛
𝑖,𝐽+1 = 0 and 𝛼𝑛

𝑖,−1 = 0. Then,

|𝑇21| ≤

⃒⃒
⃒⃒
⃒⃒𝛿ℎ

2
𝑁∗−1∑︁

𝑛=0

𝐼∑︁

𝑖=0

𝐽−1∑︁

𝑗=0

(𝜗𝑛
𝑖,𝑗+1 − 𝜗𝑛

𝑖,𝑗)|𝑣𝑛
𝑖,𝑗+1/2|

𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑖,𝑗+1

2

⃒⃒
⃒⃒
⃒⃒+ 𝒪(ℎ)

≤ ℎ

2
‖uℎ,𝛿‖𝐿∞(ΩT∗

)‖𝜕𝑥𝜗(𝑡,x)‖𝐿∞(ΩT∗
)

𝑁∗−1∑︁

𝑛=0

𝛿

𝐼∑︁

𝑖=0

ℎ

𝐽−1∑︁

𝑗=0

|𝛼𝑛
𝑖,𝑗 − 𝛼𝑛

𝑖,𝑗+1| + 𝒪(ℎ),

and hence (6.14) and Proposition 6.8 imply |𝑇21| → 0 as ℎ→ 0. Use (A.1ii) to obtain

𝑇22 = −𝛿ℎ2
𝑁∗−1∑︁

𝑛=0

𝐼∑︁

𝑖=0

𝐽∑︁

𝑗=0

(𝜗𝑛
𝑖,𝑗+1 − 𝜗𝑛

𝑖,𝑗)𝑣
𝑛
𝑖,𝑗+1/2

𝛼𝑛
𝑖,𝑗 + 𝛼𝑛

𝑖,𝑗+1

2
+ 𝒪(ℎ). (6.17)

Add and subtract 𝛿
∑︀𝑁∗−1

𝑛=0

∑︀𝐼
𝑖=0

∑︀𝐽
𝑗=0(𝜗

𝑛
𝑖,𝑗+1 − 𝜗𝑛

𝑖,𝑗)
𝑣n

i,j−1/2

2 𝛼𝑛
𝑖,𝑗 to (6.17) to arrive at

𝑇22 = 𝛿ℎ2
𝑁∗−1∑︁

𝑛=0

𝐼∑︁

𝑖=0

𝐽∑︁

𝑗=0

𝑣𝑛
𝑖,𝑗+1/2𝛼

𝑛
𝑖,𝑗+1

2
(𝜗𝑛

𝑖,𝑗+1 − 𝜗𝑛
𝑖,𝑗 − 𝜗𝑛

𝑖,𝑗+2 + 𝜗𝑛
𝑖,𝑗+1)

− 𝛿ℎ2
𝑁∗−1∑︁

𝑛=0

𝐼∑︁

𝑖=0

𝐽∑︁

𝑗=0

(𝜗𝑛
𝑖,𝑗+1 − 𝜗𝑛

𝑖,𝑗)
𝑣𝑛

𝑖,𝑗+1/2 + 𝑣𝑛
𝑖,𝑗−1/2

2
𝛼𝑛

𝑖,𝑗 . (6.18)

Use of the definition of 𝜗𝑛
𝑖,𝑗 , mean value theorem, and CFL condition (6.11) to show that the first term in

the right hand side of (6.18) converges to zero. Define 𝜕ℎ,𝛿𝜙 : Ω𝑇∗
→ R by 𝜕ℎ,𝛿𝜙 := (𝜗𝑛

𝑖,𝑗+1 − 𝜗𝑛
𝑖,𝑗)/ℎ on

(𝑡𝑛, 𝑡𝑛+1) ×𝐾𝑖,𝑗 . Then the second term in the right hand side of (6.18) can be expressed as

−
ˆ 𝑇∗

0

ˆ

Ω

𝑣ℎ,𝛿𝛼ℎ,𝛿𝜕ℎ,𝛿𝜗 dxd𝑡→ −
ˆ 𝑇∗

0

ˆ

Ω

𝑣 𝛼 𝜕𝑥𝜗 dxd𝑡,

where Lemmas A.3i and A.3ii are applied in the last step. Follow the same steps for 𝑇 𝑥
2 to obtain 𝑇2 →
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−
´ 𝑇∗

0

´

Ω
𝛼u · ∇𝜗 dxd𝑡. Rewrite 𝑇3 and apply Lemma A.3i

ˆ 𝑇∗

0

ˆ

Ω

𝛾𝛼ℎ,𝛿(1 − 𝑐ℎ,𝛿) dxd𝑡→
ˆ 𝑇

0

ˆ

Ω

𝛾𝛼(1 − 𝑐) dxd𝑡.

Plug the above in 𝑇1 + 𝑇 𝑥
2 + 𝑇 𝑦

2 = 𝑇3 to arrive the desired conclusion.
The proof of steps 2 and 3 follows from a direct application of weak convergence of (𝑢ℎ,𝛿, 𝑝ℎ,𝛿) and 𝑐ℎ,𝛿.
Hence, we omit the proofs.

Step 2 (Convergence of pressure–velocity system). Let (u, 𝑝) : Ω𝑇∗
→ R

3 be a limit provided by Theorem 6.2
such that uℎ,𝛿 ⇀ u weakly in 𝐿2(0, 𝑇∗;H) and 𝑝ℎ,𝛿 ⇀ 𝑝 weakly in 𝐿2(0, 𝑇∗;𝐿

2(Ω)). Then, (u, 𝑝) satis-
fies (1.2b) for every (ψ, 𝑞) ∈ 𝐿2(0, 𝑇∗;H) × 𝐿2(0, 𝑇 ;𝐿2(Ω)).

Step 3 (Convergence of nutrient concentration). Let 𝑐 : Ω𝑇∗
→ R be a limit provided by Theorem 6.2 such

that 𝑐ℎ,𝛿 ⇀ 𝑐 weakly in 𝐿2(0, 𝑇∗;𝑉 ). Then 𝑐 satisfies (6.6) for every 𝜙 ∈ 𝐿2(0, 𝑇∗;𝑉 ).

�

7. Conclusions

A uniform estimate on total variation of discrete solutions obtained by applying finite volume schemes on
conservation laws of the form (1.1) in two and three spatial dimensions for nonuniform Cartesian grids is proved.
We relaxed the standard assumption that the advecting velocity vector is divergence free. This enables us to
apply the finite volume scheme to problems in which the advecting velocity vector is a nonlinear function of the
conserved variable. Since the underlying meshes are nonuniform Cartesian it is possible to adaptively refine the
mesh on regions where the solution is expected to have sharp fronts. A uniform BV estimate is also obtained for
finite volume approximations of conservation laws of the type (4.1) that has a fully nonlinear flux on nonuniform
Cartesian grids. Numerical experiments support the theoretical findings. The counterexample by B. Després and
numerical evidence from Table 11 indicate that nonuniform Cartesian grids are the current limit on which we
can obtain uniform BV estimates. Extending Theorem 2.4 to perturbed Cartesian grids (Fig. 6b) might be the
immediate future step. Theorem 6.10, which proves the existence of a weak solution of (1.2), attests to the
applicability of Theorem 2.4 in the analytical study of coupled systems involving conservation laws and elliptic
equations.

Appendix A.

A.1. Identities

(i) If 𝑎, 𝑏, 𝑐, 𝑑 ∈ R, then the following identities hold: 𝑎𝑏− 𝑐𝑑 = (𝑎+𝑐)(𝑏−𝑑)
2 + (𝑎−𝑐)(𝑏+𝑑)

2 and 𝑎 = 𝑎+ − 𝑎−, where
𝑎+ = max(𝑎, 0) and 𝑎− = −min(𝑎, 0).

(ii) Discrete integration by parts formula ([11], Sect. D.1.7). For any families (𝑎𝑛)𝑛=0,...,𝑁 and
(𝑏𝑛)𝑛=0,...,𝑁 of real numbers, it holds

𝑁−1∑︁

𝑛=0

(𝑎𝑛+1 − 𝑎𝑛)𝑏𝑛 = −
𝑁−1∑︁

𝑛=0

𝑎𝑛+1(𝑏𝑛+1 − 𝑏𝑛) + 𝑎𝑁𝑏𝑁 − 𝑎0𝑏0.

A.2. Theorems

(i) Helly’s selection theorem ([13], Thm. 4, p. 176). Let Ω ⊂ R
𝑑 (𝑑 ≥ 1) be an open and bounded set

with a Lipschitz boundary 𝜕Ω, and (𝑓𝑛)𝑛∈N be a sequence in BV(Ω) such that (‖𝑓𝑛‖BV(Ω))𝑛 is uniformly
bounded. Then, there exists a subsequence (𝑓𝑛)𝑛 up to re-indexing and a function 𝑓 ∈ BV(Ω) such that as
𝑛→ ∞, 𝑓𝑛 → 𝑓 in 𝐿1(𝑈) and almost everywhere in Ω.
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(ii) Internal regularity of Poisson equation ([2], Thm. III.4.2.) Let 𝑓 ∈ 𝐿2(Ω) and Ω ⊂ R
2 be an open

and bounded set. If 𝑢 ∈ 𝐻1(Ω) is a solution of the Poisson equation −∆𝑢 = 𝑓 , then 𝑢 ∈ 𝐻2
loc(Ω). Also, for

every bounded and open sets Ω1 ⊂ Ω2 ⊂ Ω2 ⊂ Ω there exists a constant C (Ω1,Ω2) > 0 independent of 𝑢
such that ‖𝑢‖2,2,Ω1

≤ C ‖𝑓‖0,2,Ω1
.

(iii) Global regularity of Poisson equation ([19], Cor. 8.3.3). Set 𝑚 ≥ 2 and 𝑝 ≥ 1. Let Ω be a rectangle
and 𝑓 ∈ 𝑊𝑚−2,𝑝(Ω). If 𝑢 ∈ 𝐻1(Ω) is a solution of the boundary value problem −∆𝑢 = 𝑓 , where (𝜆 −
1)∇𝑢 · n+ 𝜆𝑢 = 0, 𝜆 ∈ {0, 1}, then 𝑢 ∈𝑊𝑚,𝑝(Ω).

(iv) Internal regularity of Stokes equation ([2], Thms. IV.5.8, IV.6.1). Let Ω be an open and bounded
set and 𝑔 ∈ 𝐻𝑘+1

loc (Ω), 𝑘 ≥ 0. Let (u, 𝑝) ∈ H1
loc(Ω) × 𝐿2

loc(Ω) be a solution to the compressible Stokes

system (1.2b). Then, it holds (u, 𝑝) ∈H𝑘+2,2
loc ×𝐻𝑘+1

loc (Ω). Also, for every bounded and open sets Ω1 ⊂ Ω2 ⊂
Ω2 ⊂ Ω there exists a constant C (Ω1,Ω2) > 0 independent of u and 𝑝 such that ‖u‖𝑘+2,2,Ω1

+‖𝑝‖𝑘+1,2,Ω1
≤

C ‖𝑔‖𝑘+1,2,Ω1
.

A.3. Lemmas

(i) Weak–strong convergence ([11], Lem. D.8). If 𝑝 ∈ [0,∞) and 𝑞 := 𝑝/(1 − 𝑝) are conjugate expo-
nents, 𝑓𝑛 → 𝑓 strongly in 𝐿𝑝(𝑋), and 𝑔𝑛 ⇀ 𝑔 weakly in 𝐿𝑞(𝑋), where (𝑋,𝜇) is a measured space, then
´

𝑋
𝑓𝑛𝑔𝑛 d𝜇→

´

𝑋
𝑓𝑔 d𝜇.

The next result follows from Lebesgue’s dominated convergence theorem.
(ii) Bounded–strong convergence. If 𝑓𝑛 → 𝑓 in 𝐿2(𝑋), 𝑔𝑛 → 𝑔 almost everywhere on 𝑋, ‖𝑔𝑛‖𝐿∞(𝑋) is

uniformly bounded, then 𝑓𝑛𝑔𝑛 converges to 𝑓𝑔 in 𝐿2(𝑋).
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