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Symmetries in the wheeled inverted pendulum

mechanism

Sneha Gajbhiye, Ravi N. Banavar, Sergio
Delgado

Abstract The purpose of this article is to illustrate the role of connections
and symmetries in the Wheeled Inverted Pendulum (WIP) mechanism - an
underactuated system with rolling constraints - popularized commercially as
the Segway, and thereby arrive at a set of simpler dynamical equations that
could serve as the starting point for more complex feedback control designs.
The first part of the article views the nonholonomic constraints enforced by
the rolling assumption as defining an Ehresmann connection on a fiber bundle.
The resulting equations are the reduced Euler Lagrange equations, which are
identical to the Lagrange d’Alembert equations of motion. In the second part
we explore conserved quantities, in particular, nonholonomic momenta. To do
so, we first introduce the notion of a symmetry group, whose action leaves
both the Lagrangian and distribution invariant. We examine two symmetry
groups - SE(2) and SE(2)× S

1. The first group leads to the purely kinematic
case while the second gives rise to nonholonomic momentum equations.

Keywords Lie group symmetry · Robotics · Nonholonomic systems

1 Introduction

The class of nonholonomic systems forms a large and interesting subset of
mechanical control systems. Applications include robotics, rolling and locomo-
tive mechanisms. A better understanding of the system’s intrinsic structure
and properties, at times, simplifies control synthesis. Though the classical ap-
proaches, like Lagrange-d’Alembert’s principle, yield the equations of motion,
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geometric approaches exploit underlying properties like symmetry and help
understand the structure and intrinsic properties of nonholonomic mechanical
systems. [1] is a comprehensive introduction to these notions. In this article
we study the geometric features of one such system, the Wheeled Inverted
Pendulum, using tools of geometric mechanics. A miniaturized and compact
version of the WIP (see Figure (1)) has been designed and developed in the
Institute of Automatic Control, TUM. This prototype is currently being used
as an experimental test bed for candidate control algorithms.

The Wheeled Inverted Pendulum (WIP) consists of a vertical body with
two coaxial driven wheels. Typical applications of the WIP include baggage
transportation, commuting and navigation [2]. The WIP has gained interest in
the past several years due to its maneuverability and simple construction (see
e.g. [3], [4]). Other robotic systems based on the WIP are becoming popular
as well in the robotic community for human assistance or transportation as
can be seen in the works of [5], [6], [7], [8], and a commercially available model
Segway for human transportation [2]. The stabilization and tracking control
for the WIP is challenging since the system belongs to a class of underactuated
mechanical systems (the control inputs are less than the number of configu-
ration variables) and has nonholonomic constraints as well, that arise due to
rolling without slipping assumptions on the wheels. Several control laws have
been applied to the WIP, mostly using linearized models as can be seen in [9],
[10], [11], [5]. In [12], controllability of the dynamics involving the rotation of
the wheels and the pitch of the vertical body (pendulum) were presented and
in [10] a linear controller was designed for stabilization. In [11], the authors
presented the exact dynamics of WIP and derived the linear controller. In [13]
and [14], the authors propose a the controller based on partial feedback lin-
earization. [7] develops a model based on the Euler-Rodrigues parameters and
analyzes the controllability of the WIP moving on an inclined plane. However,
the geometric structure of the WIP and the consequent aid to feedback de-
sign is yet to be completely exploited. In [15], the authors adopt a geometric
approach to derive the dynamic model. The aim of this article is to present
geometric facets, various group symmetries of the dynamics of this system, in
particular the nonholonomic momentum, and finally arrive at a model which
would considerably aid in control design.

In mechanical systems with nonholonomic constraints, the configuration
space Q is a finite dimensional smooth manifold, the tangent bundle TQ is
the velocity phase space, the Lagrangian is a map L : TQ −→ R and a smooth
distribution D ⊂ TQ determines the nonholonomic constraints. Typically, L
is the kinetic energy minus the potential energy. So, at a given point of the
configuration space, the distribution D characterizes the allowable velocity di-
rections of the system. The Lagrange-d’Alembert principle, then, yields the
equations of motion of the system. The constraints form the horizontal space
of the tangent space in a direct sum of two subspaces - termed horizontal
and vertical, and this horizontal space is realized through an Ehresmann con-
nection. The dynamics then appear in the reduced Euler-Lagrange form with
the constraint forcing terms dependant on the curvature of the connection.
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Fig. 1 KRT32- the wheeled inverted pendulum developed at TUM

More scholarly exposition on this is found in [16], [1], [17]. Often, nonholo-
nomic systems admit a symmetry group, and the action of this group usually
makes analysis simpler. The configuration space is then identified “locally”
as the product space of a group and a shape space, with the group being
the symmetry group. This modifies the Ehresmann connection to a new con-
nection which is associated with this symmetry. This new connection, which
is a principal connection, is termed as a nonholonomic connection and the
dynamics is studied on a reduced space or shape space. Hence, using group
symmetry one performs Lagrangian reduction and obtains reduced dynamics
with a reconstruction equation combined with constraints. The nonholonomic
connection, in turn, is realized through two types of connections, one due
to the constraints - the kinematic connection - and the second, arising due
to the kinetic energy metric, termed as the mechanical connection. So, the
nonholonomic connection holds information about both the constraints and
the dynamics. The general references on reduction theory with constraints are
[18], [19], [20], [1], [16], [21], [22], [23]. There are three cases to be noticed while
computing this principal connection. If the distribution forms the horizontal
space, then the principal connection is realized as a kinematic connection and
hence we have fiber (vertical) symmetry which yields the standard momentum
conservation in both spatial and body frames [24]. If the distribution forms
the horizontal symmetry, that is, the distribution lies in the fiber space, then
the equation of motion is in the Euler-Poincaré form and the momentum is
conserved in the spatial frame, for example in the vertical coin [1]. And the
third one is a general case where the distribution partially lies both in the
horizontal and the vertical spaces. This general case gives rise to a generalized
momentum equation wherein the momentum is not necessarily conserved. In
[16], [25] authors illustrates the Snakeboard example where nonconservation
of momentum plays an important role in locomotion. The WIP falls under the
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category of the general case where the forward motion of the wheels and yaw
motion are given by the generalized momentum.

The objective of this paper is to illustrate the symmetries and conserved
quantities inherent in the dynamics of the Wheeled Inverted Pendulum (WIP).
The first part of the article uses the Ehresmann connection and formulates the
dynamics in the form of the Lagrange-d’Alembert equation with the Euler-
Lagrange equation in the base variables with curvature form. The nonholo-
nomic constraint distribution forms the horizontal subspace for the Ehresmann
connection. In the literature this is called as the kinematic connection. The
second formulation uses the notion of a nonholonomic system with symmetry.
Here, a symmetry group acts on the WIP configuration space and renders the
Lagrangian and distribution invariant. Two types of Lie group symmetries are
considered. A connection termed as nonholonomic connection is introduced,
which synthesizes the mechanical connection and kinematic connection. This
analysis gives rise to momentum equation for group variables and reduced
Euler-Lagrange equation for shape variables.

2 System description

The WIP consists of a body of massmb (center of mass at a distance b from the
wheels rotation axes) mounted on two wheels of radius r. Let mW be the mass
of the wheels and d be the distance between the wheels. The wheels are directly
mounted on the body and are able to rotate independently. Since the wheels
are actuated by motors sitting on the body, a tilting motion automatically
rotates the wheels through the tilting angle. The body needs to be stabilized
in the upper position through a back and forth motion of the system similar to
the inverted pendulum on a cart. The set of generalized coordinates describing
the WIP are:

1. Coordinates of the origin of the body-fixed coordinate system in the hori-
zontal plane (x, y ∈ R

2)
2. Heading angle around the Iz-axis (θ ∈ S

1)
3. Tilting angle around the Sy-axis (α ∈ S

1)
4. Relative rotation angle of each of the wheels with respect to the body

around the Wj
y-axis, which coincides with the By-axis (φ1 ∈ S

1 and φ2 ∈
S
1)

The configuration spaceQ of the system is thus (R2×S
1)×(S1×S

1×S
1) = G×S

with q = (x, y, θ, α, φ1, φ2).
Assuming the wheels roll without slipping, the system has nonholonomic
constraints given by:

ẋL cos θ + ẏL sin θ = rφ̇1;

ẋR cos θ + ẏR sin θ = rφ̇2;

− ẋL/R sin θ + ẏL/R cos θ = 0,

(1)
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Fig. 2 The Wheeled Inverted Pendulum

With xL = x − (d/2) sin θ, yL = y + (d/2) cos θ, xR = x + (d/2) sin θ and
yR = y − (d/2) cos θ these are equivalent to

ẋ− r cos θ(φ̇1 + φ̇2) = 0, (2)

ẏ − r sin θ(φ̇1 + φ̇2) = 0, (3)

θ̇ −
r

d
(φ̇2 − φ̇1) = 0. (4)

Equations (2) and (3) are treated as nonintegrable constraints, that is, the
translational velocity of the body (chassis) in both x and y directions are
completely determined by the angular velocities of the wheels and the body
yaw angle. Equation (4) is, in fact, a holonomic constraint, which relates the
yaw angle with the roll angle of the wheels.. Consider coordinates qi (i =
1, · · · , n) for Q, and a set of velocities q̇ at point q, that defines the tangent
space TqQ. Let D be a distribution that describes the kinematic constraints
as above. So, at a given point q, the distribution D characterizes the allowable
velocity direction of the system, i.e, D is a collection of linear subspaces Dq ⊂
TqQ, ∀q ∈ Q. The nonholonomic constraint can be expressed as ṡa−Aa

β ṙ
β = 0,

where s = (x, y, θ), r = (α, φ1, φ2) and

A =





0 −r cos θ −r cos θ
0 −r sin θ −r sin θ
0 r

d − r
d



 . (5)

The above constraints have a geometric interpretation. Consider a bundle map
πQ,S : Q −→ S which is a submersion and S is termed the base space, then
TqπQ,S is a derivative map (onto) at each q ∈ Q and kernel of TqπQ,S at any
point forms a vertical space Vq. This vertical subbundle (of TQ) is also referred
as the fiber distribution, and is defined as

V Q = ∪q∈QVqQ VqQ = {vq ∈ TqQ|vq ∈ kerTqπ}. (6)
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Definition 1 An Ehresmann connection A is defined as a vector-valued one
form which splits the tangent space TqQ at every point q ∈ Q into a vertical and
a horizontal space, satisfying: 1) Aq : TqQ −→ Vq and, 2) A is a projection,
A(vq) = vq for all vq ∈ Vq. For TqQ = Hq ⊕ Vq, implying Hq = kerAq.

We choose the Ehresmann connection such that the constraint distribution
forms the horizontal space. For Xq ∈ TQ, we then have the horizontal part of
the vector field as H(Xq) = Xq − A(q)Xq. In bundle coordinates, q = (s, r),
the connection which is a vector-valued one form can be expressed in local co-

ordinates as A = (dsa+Aa
β(s, r)dr

β)
∂

∂sa
. Therefore, the vertical component is

(ṙ, ṡ) 7→ (0, ṡ+A(s, r)ṙβ) and the horizontal component (ṙ, ṡ) 7→ (ṙ,−A(s, r)ṙ).
The Lagrangian for the WIP is taken to be the total kinetic energy minus

the potential energy and is given by

L(q, q̇) =
1

2
(mb + 2mW )ẋ2 +

1

2
(mb + 2mW )ẏ2 +

1

2
Iθ(α)θ̇

2

+
1

2
(mbb

2 + IByy)α̇
2 +

1

2
IWyy(φ̇

2
1 + φ̇2

2)−mbb sinα sin θẋθ̇

+mbb cosα cos θα̇ẋ+mbb sinα cos θθ̇ẏ +mbb cosα sin θα̇ẏ

−mbbg cosα (7)

where,

Iθ(α) = 2IWzz + IBz cos
2 α+ 2mW d2 + (IBxx +mBb

2) sin2 α.

Given L : TQ −→ R and a smooth distribution D that represents the con-
straints, the Lagrange-d’Alembert principle that yields the equations of mo-
tion states that the motion of the system occurs along trajectories that satisfy
Hamilton’s variational principle where the variations of L are taken along
curves which satisfy D, and are assumed to vanish at the endpoints. We now
define the constrained Lagrangian by substituting the constraints (2)-(4) into
the Lagrangian as

Lc(α, α̇, φ̇1, φ̇2) = L(θ, α, r cos θ(φ̇1 + φ̇2), r sin θ(φ̇1 + φ̇2),
r

d
(φ̇2 − φ̇2))

yielding Lc as

Lc =
1

2
a1φ̇

2
1 +

1

2
a1φ̇

2
2 +

1

2
c α̇2 +

1

2
a2α̇(φ̇1 + φ̇2) + a3φ̇1φ̇2 −mbbg cosα

where

a1 =

(

1

4
(mb + 2mW )r2 +

r2

4d2
Iθ(α) + IWyy

)

;

a2 =
(

(mb + 2mW )r2 +mbb cosα
)

;

a3 =

(

1

4
(mb + 2mW )r2 −

r2

4d2
Iθ(α)

)

;

c = (mbb
2 + IByy).



Symmetries in the wheeled inverted pendulum mechanism 7

Following [16], the equations of motion in terms of the constrained Lagrangian
Lc, termed as reduced Euler-Lagrange equations, are given by

d

dt

(

∂Lc

∂α̇

)

−
∂Lc

∂α
+Aa

α

∂Lc

∂sa
= −

∂L

∂ṡb

(

Bb
ααα̇+Bb

αφ1
φ̇1 +Bb

αφ2
φ̇2

)

, (8)

d

dt

(

∂Lc

∂φ̇1

)

+Aa
φ1

∂Lc

∂sa
= −

∂L

∂ṡb

(

Bb
φ1αα̇+Bb

φ1φ1
φ̇1 +Bb

φ1φ2
φ̇2

)

, (9)

d

dt

(

∂Lc

∂φ̇2

)

+Aa
φ2

∂Lc

∂sa
= −

∂L

∂ṡb

(

Bb
φ2αα̇+Bb

φ2φ1
φ̇1 +Bb

φ2φ2
φ̇2

)

(10)

where the curvature Bb
βγ is

Bb
βγ =

(

∂Ab
β

∂rγ
−

∂Ab
γ

∂rβ
+Aa

β

∂Ab
γ

∂sa
−Aa

γ

∂Ab
β

∂sa

)

(11)

where Aa
α are the coordinate expression of the Ehresmann connection on the

tangent bundle defined by the constraints. The Ehresmann connection in co-
ordinates is

Ax
α = 0, Ax

φ1
= −r cos θ, Ax

φ2
= −r cos θ,

Ay
α = 0, Ay

φ1
= −r sin θ, Ay

φ2
= −r sin θ,

Aθ
α = 0, Aθ

φ1
= r

d , Aθ
φ2

= −
r

d
. (12)

and the coefficients Bb
βγ are given by

Bb
αα = Bb

αφ1
= Bb

αφ2
= Bb

φ1α = Bb
φ2α = Bb

φ1φ1
= Bb

φ2φ2
= 0,

Bb
φ1φ2

= Aθ
φ1

∂Ab
φ2

∂θ
−Aθ

φ2

∂Ab
φ1

∂θ
, Bb

φ2φ1
= Aθ

φ2

∂Ab
φ1

∂θ
−Aθ

φ1

∂Ab
φ2

∂θ
.

The equations of motion, calculated from (8)-(10) are

d

dt

(

∂Lc

∂α̇

)

−
∂Lc

∂α
= 0,

d

dt

(

∂Lc

∂φ̇1

)

= −2mbb
r2

d
sinα

( r

d
(φ̇2 − φ̇1)

)

φ̇2 + τ1

d

dt

(

∂Lc

∂φ̇2

)

= 2mbb
r2

d
sinα

( r

d
(φ̇2 − φ̇1)

)

φ̇1 + τ2

(13)

where τ1 and τ2 are the respective torques on the two wheels. These equations
of motion are identical to the one given in [15]. In section 3, we show that using
SE(2) symmetry yields a principal kinematic case and, the principal connection
in such a case is equivalent to the Ehresmann connection defined above. For a
completeness of exposition, the preliminary notions of a nonholonomic system
with symmetry as developed in [1], [16] are presented in the Appendix. We
now illustrate these tools on the WIP system.
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3 Symmetries in the WIP mechanism

We make two choices for the group action:

– G1 = SE(2) (the position on the plane and the yaw angle) and
– G2 = SE(2)×S

1 (the position on the plane and the yaw angle, and the roll
of the wheels) .

In the first case we illustrate that the principal connection is equivalent to the
Ehersmann connection and the equations of motion are given by the reduced
Euler-Lagrange equations. In the second case we first identify the configuration
variable as q = (x, y, θ, α, φ = φ1 + φ2) and then choose the group action of
SE(2) × S

1 on this Q. This choice of Q comes from the fact that instead
of the absolute wheel angles φ1 and φ2 we take the difference α = φ1 − φ2

which represent the yaw angle, and the sum φ =
(

φ1+φ2

2

)

which permits

us to calculate the forward distance traversed as rφ. This modified choice
also comes from the ultimate control synthesis objective where one wants to
control the forward and yaw velocity of the WIP. In this case we illustrate the
nonholonomic momentum and derive the reduced nonholonomic Lagrange-
d’Alembert equations.
Case I: Consider the Lie group G1 = SE(2) and the symmetry in s = (x, y, θ)
variables of the system. The action by the group element (x̄, ȳ, θ̄) is given by

(x, y, θ, α, φ1, φ2) 7−→ (x cos θ̄− y sin θ̄+ x̄, x sin θ̄+ y cos θ̄+ ȳ, θ+ θ̄, α, φ1, φ2)

The tangent space to the SE(2) group orbit is given by

TqOrb(q) = span{
∂

∂x
,
∂

∂y
,
∂

∂θ
} (14)

The Lagrangian (7) and constraints (1) are invariant under the action of G1.
The vector fields X1, X2, X3 that are the local generators for the constrained
distribution D and are given by

X1 = cos θ
∂

∂x
− sin θ

∂

∂y
+

1

r

∂

∂φ1
+

1

r

∂

∂φ2
,

X2 =
∂

∂α
,

X3 =
∂

∂θ
+

d

r

∂

∂φ1
−

d

r

∂

∂φ2

therefore,
Dq = span{X1, X2, X3}. (15)

The intersection of the tangent space to the orbit with the constrained dis-
tribution Sq = Dq ∩ TqOrb(q) = {0} and the components of curvature are
independent of x and y. This is the principal kinematic case, in which there is
a principal connection whose horizontal space is spanned by the distribution
D. The projection on the vertical space defines the Ehresmann connection
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and since the distribution is invariant under the group action, the principal
connection related to the Ehresmann connection as A = AQ, given in (12).
The system is reduced from TQ to TQ/G1 = se(2) × TS1 × TS1 × TS1 by
the group action. Substituting the constraint ṡ = −A(s, r)ṙ from (2)-(4), the
reduced equations of motion are obtained on D/G1 = TS1 × TS1 × TS1. The
reduced constrained Lagrangian is

lc(α, α̇, φ̇1, φ̇2) = l(r cos θ(φ̇1 + φ̇2), r sin θ(φ̇1 + φ̇2),
r

d
(φ̇2 − φ̇2))

There is no momentum equation and correspondingly no body velocity. The
equation of motion is the reduced Euler-Lagrange equation given in (13) with
the reconstruction equation being ṡ = −A(s, r)ṙ.
Case II: Consider the group action G2 = SE(2)×S

1 on Q = SE(2)×S
1×S

1.
The group here denotes the (x, y) position, heading angle θ and φ sum of

wheel angles. Let φ̇ =
(

φ̇1+φ̇2

2

)

be sum of wheel velocity results in the forward

velocity rφ̇ of the cart. With this let the configuration space is now identify as
Q = SE(2) × S

1 × S
1 with configuration variables as q = (x, y, θ, α, φ). Then

the left action of G2 on Q is given as

Φ : (x, y, θ, α, φ) 7−→ (x cos θ̄ − y sin θ̄ + x̄, x sin θ̄ + y cos θ̄ + ȳ, θ + θ̄, α, φ+ φ̄)

where (x̄, ȳ, θ̄) ∈ SE(2) and φ̄ ∈ S
1. The left action of G on the tangent-lifted

coordinates of the manifold Q is

TΦ(x̄,ȳ,θ̄,φ̄) : (x, y, θ, α, φ, ẋ, ẏ, θ̇, α̇, φ̇) −→

(x cos θ̄ − y sin θ̄ + x̄, x sin θ̄ + y cos θ̄ + ȳ, θ + θ̄, α,

φ+ φ̄, ẋ cos θ̄ − ẏ sin θ̄, ẋ sin θ̄ + ẏ cos θ, θ̇, α̇, φ̇)

The Lagrangian L of the system is,

L(q, q̇) =
1

2
(mb + 2mW )(ẋ2 + ẏ2) +

1

2

(

Iθ(α) +
d2

2r2
IWyy

)

θ̇2

+
1

2
(mbb

2 + IByy)α̇
2 +

1

2
IWyy2φ̇

2 +mbb sinαθ̇(− sin θẋ

+ cos θẏ) +mbb cosαα̇(cos θẋ+ sin θẏ)−mbbg cosα (16)

and the nonholonomic constraint is

ẋ− r cos θφ̇ = 0, ẏ − r sin θφ̇ = 0. (17)

It is easily proved that the Lagrangian L and distribution D are invariant un-
der the action of the group G.
Substituting the constraints in the Lagrangian (16), the constrained Lagrangian
Lc is determined as

Lc = (mb + 2mW )r2φ̇2 + rmbb cosαφ̇α̇+
1

2

(

Iθ +
d2

2r2
IWyy

)

θ̇2

+
1

2
(mbb

2 + IB)α̇+
1

2
2IWyyφ̇

2 (18)



10 Sneha Gajbhiye, Ravi N. Banavar, Sergio Delgado

The tangent space to the G2 orbit is

TqOrb(q) = span{
∂

∂x
,
∂

∂y
,
∂

∂θ
,
∂

∂φ
} (19)

and the constraint distribution is given by Dq = span{X1, X2, X3}. with

X1 = cos θ
∂

∂x
− sin θ

∂

∂y
+

1

r

∂

∂φ
; X2 =

∂

∂α
; X3 =

∂

∂θ
.

The constraint fiber distribution Sq is calculated as

Sq = Dq ∩ TqOrb(q) = {cos θ
∂

∂x
+ sin θ

∂

∂y
+

1

r

∂

∂φ
,

∂

∂θ
} (20)

For obtaining the corresponding momentum equation, we consider the bundle
whose fibers span the tangent vectors in Sq and choose a section of this bundle.
Consider g = se(2) × R the Lie algebra of G2. The generators corresponding
to the Lie algebra elements can be represented in standard basis in R

4 as

(1, 0, 0, 0)Q =
∂

∂x
, (0, 1, 0, 0)Q =

∂

∂y
,

(0, 0, 1, 0)Q = −y
∂

∂x
+ x

∂

∂y
+

∂

∂θ
, (0, 0, 0, 1)Q =

∂

∂φ
where the first two components represent translations, the third is the yaw-
ing motion and the fourth being the rolling motion. Therefore, to obtain the
section of Sq given by vector fields

(ξq1)Q = r cos θ
∂

∂x
+ r sin θ

∂

∂y
+

∂

∂φ
, and (ξq2)Q =

∂

∂θ
(21)

and the corresponding Lie algebra elements are

ξq1 = (r cos θ, r sin θ, 0, 1) and ξq2 = (y,−x, 1, 0). (22)

We have two the nonholonomic momenta corresponding to the two infinitesi-
mal generators in Sq. The nonholonomic momentum in the body representa-
tion are calculated from (54) and (53) as

pi(ξ
q) =

∂L

∂q̇i
(ξqi )Q (23)

which yields

p1(ξ
q
1) =

∂L

∂q̇
(ξq1)Q

= 〈
(

(mb + 2mW )ẋ−mbb sinα sin θθ̇ +mbb cosα cos θα̇,

(mb + 2mW )ẏ +mbb sinα cos θθ̇ +mbb cosα sin θα̇,

(Iθ +
d2

2r2
IWyy)θ̇ +mbb sinα(− sin θẋ+ cos θẏ), (mbb

2 + IByy)α̇

+mbb cosα(cos θẋ+ sin θẏ), 2IWyyφ̇
)

; (r cos θ, r sin θ, 0, 0, 1)〉

=
[

(mb + 2mW )r2 + 2IWyy

]

φ̇+ rmbb cosαα̇ (24)
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and

p2(ξ
q
2) =

∂L

∂q̇
(ξq2)Q = 〈

(

(mb + 2mW )ẋ−mbb sinα sin θθ̇

+mbb cosα cos θα̇, (mb + 2mW )ẏ +mbb sinα cos θθ̇

+mbb cosα sin θα̇, (Iθ +
d2

2r2
IWyy)θ̇

+mbb sinα(− sin θẋ+ cos θẏ), (mbb
2 + IByy)α̇

+mbb cosα(cos θẋ+ sin θẏ), 2IWyyφ̇
)

; (0, 0, 1, 0, 0)〉

=

[

Iθ(α) +
d2

2r2
IWyy

]

θ̇ (25)

From the nonholonomic momenta calculated in (24) and (25), the nonholo-
nomic momentum equations are evaluated as

d

dt
p1(ξ

q
1) =

∂L

∂q̇

[

d

dt
(ξq1)

]

Q

= −
(

(mb + 2mW )ẋ−mbb sinαθ̇ sin θ

+mbb cosαα̇ cos θ) r sin θθ̇ + ((mb + 2mW )ẏ

+mbb sinαθ̇ cos θ +mbb cosαα̇ sin θ
)

r cos θθ̇

= mbrb sinαθ̇
2, (26)

d

dt
p2(ξ

q
2) =

∂L

∂q̇

[

d

dt
(ξq2)

]

Q

=
(

(mb + 2mW )ẋ−mbb sinαθ̇ sin θ

+mbb cosαα̇ cos θ) ẏ −
(

(mb + 2mW )ẏ +mbb sinαθ̇ cos θ

+mbb cosαα̇ sin θ) ẋ

= −mbbr sinαφ̇θ̇. (27)

Eliminating φ̇ and θ̇ using equations (24) and (25), the momentum dynamics
are expressed as

ṗ1 =
mbrb sinα

[f(α)]2
p22, (28)

ṗ2 = −
mbbr sinαp2

f(α)h
[mbb cosαα̇+ p1] , (29)

with

h =
(

(mb + 2mw)r
2 + 2IWyy

)

and f(α) =

(

Iθ(α) +
d2

2r2
IWyy

)

.

and

Iθ(α) = 2IWzz + IBz cos
2 α+ 2mW d2 + (IBxx +mBb

2) sin2 α. (30)

This completes the momentum equations computation for the group variables
corresponding to Sq. Now we calculate the the dynamic equation governing
the shape variable α given in (59).
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3.1 Shape dynamics of the WIP under G2 action

To explicitly express the shape dynamics, the reduced Lagrangian and the
constrained reduced Lagrangian are computed as follows.

3.1.1 Reduced Lagrangian and constrained reduced Lagrangian

The rolling constraint (17) is now expressed in the body coordinate frame as

ξ1 = rξ4; ξ2 = 0. (31)

where ξ = g−1ġ ∈ se(2) × R is the (left-invariant) body angular velocity,
expressed by









ξ1
ξ2
ξ3
ξ4









=









cos θẋ+ sin θẏ
− sin θẋ+ cos θẏ

θ̇

φ̇









. (32)

Theorem 1 With (L,D) and G2 as the group action, the constrained reduced
Lagrangian is

lc(α,α̇, ξ) =
1

2

(

(mb + 2mw)r
2 + 2IWyy

)

ξ24 + rmbb cosαα̇ξ4

+
1

2
(Iθ +

d2

2r2
IWyy)ξ

2
3 +

1

2
(mbb

2 + IB)α̇
2 −mbgb cosα.

(33)

Proof : When the Lagrangian L and the distribution D are invariant under the
action of a group G, the system is reduced to the quotient space D/G. From a
system(L, D) on TQ, a reduced Lagrangian l : g× TS1 −→ R is calculated as

l(α, α̇, ξ) =
1

2
(mb + 2mw)ξ

2
1 −mbb sinαθ̇ξ2 +mbb cosαα̇ξ1

+
1

2
(mb + 2mW )ξ22 +

1

2
(Iθ +

d2

2r2
IWyy)ξ

2
3

+
1

2
(mbb

2 + IB)α̇
2 +

1

2
(2IWyy)ξ

2
4 −mbgb cosα

where ξ = g−1ġ ∈ se(2) × R. The constraint reads ξ1 = rξ4 and ξ2 = 0
(this eliminates two variables of the Lie algebra.) The constrained reduced
Lagrangian lc : so(2)× R× TS1 −→ R is

lc(α, α̇, ξ) =
1

2

(

(mb + 2mw)r
2 + 2IWyy

)

ξ24 + rmbb cosαα̇ξ4

+
1

2
(Iθ +

d2

2r2
IWyy)ξ

2
3 +

1

2
(mbb

2 + IB)α̇
2 −mbgb cosα

�

Notice that, the nonholonomic momentum (24)-(25) can also be obtained from
the constrained reduced Lagrangian as

p1 =
∂lc

∂φ̇
and p2 =

∂lc

∂θ̇
. (34)
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Claim The nonhlonomic connection regarded as a principal connection Anhc

and is used to define the constraint equations of the form:

Anhc(q̇) = g−1ġ +A(α)α̇ = Γ (α)p (35)

where A(·) denotes the local form of the nonholonomic connection given as,

A(α) = r

(

mbb

h
cosα

)

dαe1 +

(

mbb

h
cosα

)

dαe4, (36)

and

Γ (α) =
r

h
e1 +

1

f(α)
e3 +

1

h
e4. (37)

Proof: The kinematic constraints and the momentum equation are given by

ẋ− r cos θφ̇ = 0,

ẏ − r sin θφ̇ = 0,

}

Nonholonomic constraints

p1 = hφ̇+mbbr cosαα̇,

p2 = f(α)θ̇.

}

Momentum

Adding and subtracting first two equation then substituting for φ̇ from third
equation, we can write









(cos θẋ+ sin θẏ)
(− sin θẋ+ cos θẏ)

θ̇

φ̇









+









rmbb
h cosαα̇

0
0

mbb
h cosαα̇









=









r
hp1
0

1
f(α)p2
1
hp1









(38)

These equations have the form

g−1ġ +A(α)α̇ = Γ (α)p, (39)

where,

A(α) =
rmbb

h
cosαe1 dα+

mbb

h
cosαe4 dα

Γ (α) =
r

h
e1 +

1

f(α)
e3 +

1

h
e4.

Furthermore, if the momenta are given by p1 and p2, then the allowable tra-
jectories for the system must satisfy

Anhc(q) · q̇ = Γ (α)p =









r
h 0
0 0
0 1

f(α)
1
h 0









[

p1
p2

]

. (40)

The above equation specifies the trajectories along the fiber in terms of pitch
angle (base variable) and momentum variables. �

With this, the dynamics of the WIP system is now calculated.
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Theorem 2 Given the invariance of the Lagrangian and the constraints, the
flow of (p1, p2) is independent of the group variable and is governed by the
generalized momentum equation,

ṗ1 = p2ρpp(α)p2, (41)

ṗ1 = σα̇p(α)α̇p2 + σppp1p2. (42)

where ρpp = (mbrb sinα)/f
2(α), σα̇p = (m2

bb
2r sin 2α)/2f(α)h and (mbbr sinα)/2f(α)h.

Further, using the constrained reduced Lagrangian, the shape dynamics is writ-
ten as

(

mbb
2 + IB −

m2
bb

2 cos2 α

h

)

α̈ = −
mbb sin 2α

2h
α̇2

+
1

2

(

m2
bb

2r sin 2α− hf ′(α)
)

hf(α)2
p22 −mbgb sinα (43)

Proof: The proof of this follows by taking Ω = Γ (α)p, then from equation (39)
of Claim 3.1.1 we can rewrite the constraints using angular momentum Ω as









ξ1
ξ2
ξ3
ξ4









=









−A1α̇+Ω1

Ω2

Ω3

−A2α̇+Ω4









(44)

with A1 = (rmbb cosα)/h and A2 = (mbb cosα)/h. Using Theorem 1, the
reduced Lagrangian in terms of (α, α̇, Ω)

l(α, α̇, Ω) =
1

2
(mb + 2mW )[Ω2

1 +A2
1α̇

2 − 2A1Ω1α̇+Ω2
2 ] +

1

2
f(α)Ω2

3

+
1

2
(mbb

2 + IB)α̇
2 +

1

2
IWyy2[Ω

2
4 +A2

2α̇
2 − 2A2Ω4α̇]

+mbb sinαΩ3Ω2 +mbb cosαα̇Ω1 −mbb cosαA1α̇
2 −mbgb cosα

The constraint space bS is defined by

bS = {Ω1 = rΩ4 and Ω2 = 0} (45)

Substituting the above constraints, the constraint reduced Lagrangian is ob-
tained as

lc(α, α̇, Ω) =
1

2
hΩ2

4 +
1

2
f(α)Ω2

3 +
1

2
(mbb

2 + IB −
rm2

bb
2 cos2 α

h
)α̇2 −mbgb cosα,

=
1

2

(

p21
h

+
p22

f(α)

)

+
1

2
(mbb

2 + IB −
m2

bb
2 cos2 α

h
)α̇2 −mbgb cosα.

The shape dynamics is calculated from (59)(also refer Ostrowski (1996) [21],
[26]) as

d

dt

∂lc
∂α̇

−
∂lc
∂α

= 〈ad∗ξ
∂l

∂ξ
, A(·)〉+ 〈

∂l

∂ξ
,

(

dA(α̇, ·) +
∂Γ (α)p

∂α

)

〉, (46)
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where

dA(α̇, ·) =
∂A

∂α
α̇−

∂Aα̇

∂α
= 0;

ad∗ξ
∂l

∂ξ
=









− ∂l
∂ξ2

ξ3
∂l
∂ξ1

ξ3
ξ2

∂l
∂ξ3

− ξ1
∂l
∂ξ3

0









;
∂l

∂ξ
=









(mb + 2mW )ξ1 −mbb cosαα̇
−mbb sinαξ3 + (mb + 2mW )ξ2

−mbb sinαξ2 + f(α)ξ3
IWyy

2
r2 ξ4









Substituting these terms and calculating the partials we get the resultant
shape dynamics as (43). The momentum equations are calculated in preceding
section and is given by equation (28) and (29). �

To summarize the idea presented so far for the WIP, we have used the G2

symmetry group and the tools associated to simplify the dynamics to the
form:

g−1ġ +A(α)α̇ = Γ (α)p, (47)

ṗ1 =
mbrb sinα

[f(α)]2
p22 + u1, (48)

ṗ2 = −
mbbr sinαp2

f(α)h
[mbb cosαα̇+ p1] + u2, (49)

(

mbb
2 + IB −

m2
bb

2 cos2 α

h

)

α̈ = −
mbb sin 2α

2h
α̇2

+
1

2

(

m2
bb

2r sin 2α− hf ′(α)
)

hf(α)2
p22 −mbgb sinα (50)

Equation (48) is the momentum conjugate to the forward velocity and (49) is
the yaw momentum. The controls u1 and u2 are the torque responsible for the

forward motion and the yaw motion of the WIP. In particular, u1 = r(τ1+τ2)
2

and u2 = r(τ2−τ1)
d , where τ1 and τ2 are the wheel torques.

Thus we have reduced the equation from 3 second order equations with 3
constraints equations to 5 first order equations and 1 second order equation
(7 first order equations). The process of reconstruction is done by lifting the
shape curve through the Lie algebra through connection (47) in order to solve
the dynamics on the fiber. Control laws could now be synthesized on this
set of equations, with the objective of preserving a vertically upright position
(α = 0) and a constant forward momentum p1 and yaw momentum p2.

4 Future work

With the dynamics given by (48)-(50), the controlled directions are given by
the fibers of a subbundle F∗ of the momentum phase space T ∗Q. This F∗

is a subset of S∗, where S∗ ⊂ T ∗Q is a bundle over Q whose fibers are the
dual of the fibers of S. Sometimes, this may fail to be a cotangent space
to the submanifold of the configuration space, which is typical when control
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torques are used. In such a situation, a suitable choice of basis for the Lie
algebra may result in simpler controlled dynamics. In [27], the authors discuss
quasivelocities and its application in control, used Hamel’s equation and body
frame basis to derived the momentum equations in the body frame and prove
conservation laws. Moreover, such a change in frame (Lie algebra basis) may
assist in design stabilizing inputs for the system. The future work is to examine
such a change in basis and design control laws appropriately.
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6 Appendix

Symmetries plays an important role in nonholonomic systems. Suppose we are
given a Lagrangian L and a smooth constraint nonintegrable distribution D,
then the action of a group and symmetry are defined as follows:

Definition 2 The (left) action of a Lie group G on a smooth manifold Q is a
smooth mapping Φ : G×Q −→ Q, such that 1) Φ(e, q) = q for all q ∈ M and
Φ(g, Φ(h, q)) = (gh, q) for all g, h ∈ G and q ∈ M , and 2) For every g ∈ G,
the map Φg is diffeomorphism.

Definition 3 The tangent lift of a group action Φ is

TΦ : G× TQ −→ TQ

(g, (q, q̇)) → TΦ(g, q, q̇) = (Φ(g, q), TqΦ(g, q̇)).

Definition 4 A function F is invariant (or symmetric) with respect to an
action Φ of a Lie group G if, for every g ∈ G, the map Φg is a symmetry of
F , that is, F ◦ Φg = F . The group G is then called a symmetry group of F .

Definition 5 A distribution D is invariant in a sense that the action of g ∈ G
maps Dq at point q to Dgq at point gq.

In the context here, a mechanical system is invariant under a Lie group action
G if the system Lagrangian L and constraint distribution D are invariant. If
this holds, then the system posses group symmetry.
Orbit Space: The action of a Lie group G through a point on manifold forms
a group orbit. The group orbit through a point q on Q is defined as

Orb(q) , {gq |g ∈ G}. (51)

Let g be the Lie algebra of the Lie group G and ξ ∈ g.
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Definition 6 Suppose Φ : G × Q −→ Q is an action. For ξ ∈ g, the map
Φξ : R×Q −→ Q defined as Φξ(t, q) = Φ(exp(ξt), q) is an R action (called as
flow) on Q . The vector field that generates this flow, is given by

ξQ(q) =
d

dt

∣

∣

∣

t=0
Φ(exp(tξ), q) (52)

and is called an infinitesimal generator of the action corresponding to ξ.

Hence, the tangent space to a group orbit through a point q is given by the set
of infinitesimal generators at that point, denoted by TqOrb(q) = {ξQ(q) | ξ ∈
g}. Now, let us revisit our bundle structure.

Consider a free and proper action of a Lie group G on Q. The quotient
space (shape space) Q/G ∼= S and the projection map π : Q −→ Q/G define a
bundle structure referred to as a principal bundle and the kernel of Tqπ, which
is the tangent space to the group orbit, is called as the vertical space of the
bundle at point q. We now define a connection, termed as principal connection
on Q(S,G, π), as follows.

Definition 7 A principal connection on Q(S,G, π) is a g valued 1-form A on
Q satisfying,

1. A(ξQ(q)) = ξ, ∀ξ ∈ g and q ∈ Q;
2. A(Φ∗Xp) = AdgA(Xp) for all Xp ∈ TQ, where Ad denotes the adjoint of

G on g. This is called the equivariance of the connection.

Then the horizontal subspace can be denoted as Hq = {vq|A(vq) = 0}, and A
can be expressed using the above property as A(g, r, ġ, ṙ) = Adg(ξ + A(r)ṙ).
Here, A is the local form of connection A which only depends on r.
Assume that the system Lagrangian L and the constraint distribution D of a
constrained mechanical system are invariant under a Lie group action G. Then
following [21],[28], assume Dq + Tq(Orb)(q) = TQ. Since we are interested
in those symmetry directions which are compatible with the constraints, let
Sq = Dq ∩ TqOrb(q) be the intersection of the tangent space to the orbit with
the constraint distribution. Sq is called the constraint fiber distribution and
the union of these spaces over q ∈ Q forms a vector bundle S over Q. The Lie
algebra for this intersection is defined as below:

Definition 8 (Lie algebra of Sq) Define for each q ∈ Q the subspace gq to
be the set of Lie algebra elements in g whose infinitesimal generators eval-
uated at q lie in both Dq and TqOrb(q): gq = {ξ ∈ g |ξQ(q) ∈ Sq}. The
corresponding bundle over Q whose fiber at point q is gq is denoted by gD.

6.1 Nonholonomic momentum and reduced dynamics

For the bundle gD −→ Q whose fiber at a point q is given by gq, the nonholo-
nomic momentum is defined as

Jnhc : TQ −→ gD
∗

(q, q̇) 7→ Jnhc(q, q̇)

Jnhc(q, q̇)(·) : gD −→ R, ξq 7→ 〈
∂L

∂q̇
, ξqQ(q)〉. (53)
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The nonholonomic momentum provides the nonholonomic connection, and
the horizontal space at point q of this connection is the orthogonal com-
plement of S lying in the constraint distribution, i.e, Hq = S⊥

q ∩ Dq. Fur-
ther, consider e1(q), · · · , es(q), es+1(q), · · · ek(q) to be the q-dependent Lie al-
gebra basis of g such that the first ‘s’ element span the subspace gq . Let
e1(r), · · · , es(r), es+1(r), · · · ek(r) denote this basis of g at g = Id. Then the
body fixed basis are defined as ek(q) = Adgek(r). Thus, in this basis the
momentum is defined as

〈Jnhc(g, r, ġ, ṙ), ei(g, r)〉 = 〈
∂l

∂ξ
, ei(r)〉 := pi, 1 ≤ i ≤ s. (54)

where l is the reduced Lagrangian of the system and pi denotes the momentum
in the body frame.

Definition 9 (Momentum equation [16]) The generalized momentum equa-
tion in body representation on the principle bundle Q −→ Q/G is given as

d

dt
pi = 〈

∂l

∂ξ
, [ξ, ei(r)] +

∂ei
∂r

ṙ〉. (55)

Now, consider a map As : TqQ −→ Sq, such that (q, q̇) 7→ (Ī−1Jnhc)Q, where
Ī : gD −→ gD

∗

is the local locked inertia tensor in the group direction. And
Akin : TqQ −→ S⊥

q is the kinematic connection orthogonal to the kinetic
energy metric. Then the constraints and momentum equations are written as

Akin(q)(q̇) = 0; As(q)(q̇) = (Ī−1p)Q. (56)

where p = 〈Jnhc(q)q̇, ξq〉. Therefore the nonholonomic connection is the sum
of kinematic and symmetric connection, Anhc = Akin +As.
Reduced dynamics: If l the Lagrangian reduced by the group action and pb
is the body momenta in the group directions in the constraint manifold, then
the constraint can be written as, Ī−1p = ξ+A(r)ṙ, where A denotes the local
form of the nonholonomic connection. The constrained Lagrangian, expressed
in the momentum variable p is,

lc(r, ṙ, p) = l(r, ṙ, ξ)
∣

∣

ξ=−A(r)ṙ+Ī−1p
(57)

Expressing Ω , Ī−1p which is the body angular velocity in a body fixed basis
at identity, we write the reduced constrained Lagrangian as

lc(r, ṙ, Ω) = l(r, ṙ,−A(r)ṙ +Ω) (58)

Then by the reduced nonholonomic constrained variational principle, the equa-
tions of motion are given by

d

dt

∂lc
∂ṙ

−
∂lc
∂r

= N(r, ṙ, p), (59)

where

N = 〈ad∗ξ
∂l

∂ξ
,A(·)〉+ 〈

∂l

∂ξ
,

(

dA(ṙ, ·)
∂Γ (r)p

∂r

)

〉, with dA =
∂A(r)

∂r
α̇−

∂A(r)ṙ

∂r
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where Γ : gD
∗

−→ gD is the inverse reduced inertia tensor. Hence, equation
(55) and (59), together with the reconstruction equation g−1ġ = −A(r)ṙ +
Γ (r)p, give the complete dynamics of the system termed as the reduced non-
holonomic Lagrange-d’Alembert-Poincaré equation of motion [16].
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rect Products with Applications to Continuum Theories,” Advances in Mathematics, vol.
137, 1998.

24. J. Koiller, “Reduction of some classical non-holonomic systems with symmetry,” Archive
for rational mechanics and analysis, vol. 118, no. 2, pp. 113–148, 1992.

25. J. Ostrowski, J. Burdick, A. D. Lewis, and R. M. Murray, “The mechanics of undu-
latory locomotion: The mixed kinematic and dynamic case,” in Proceedings of IEEE
International Conference on Robotics and Automation, vol. 2, 1995, pp. 1945–1951.

26. D. V. Zenkov, A. M. Bloch, and J. E. Marsden, “The Lyapunov-Malkin Theorem and
Stabilization of the Unicycle with Rider,” Systems Control Letters, vol. 45, pp. 293–302,
1999.

27. A. M. Bloch, J. E. Marsden, and D. V. Zenkov, “Quasivelocities and symmetries in
non-holonomic systems,” Dynamical systems, vol. 24, no. 2, pp. 187–222, 2009.
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