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Abstract

A unified framework for fourth-order semilinear problems with trilinear nonlinear-

ity and general sources allows for quasi-best approximation with lowest-order finite

element methods. This paper establishes the stability and a priori error control in the

piecewise energy and weaker Sobolev norms under minimal hypotheses. Applications

include the stream function vorticity formulation of the incompressible 2D Navier-

Stokes equations and the von Kármán equations with Morley, discontinuous Galerkin,

C0 interior penalty, and weakly over-penalized symmetric interior penalty schemes.

The proposed new discretizations consider quasi-optimal smoothers for the source

term and smoother-type modifications inside the nonlinear terms.
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1 Introduction

The abstract framework for fourth-order semilinear elliptic problems with trilinear

nonlinearity in this paper allows a source term F ∈ H−2(�) in a bounded polygonal

Lipschitz domain �. It simultaneously applies to the Morley finite element method

(FEM) [8, 15], the discontinuous Galerkin (dG) FEM [18], the C0 interior penalty

(C0IP) method [3], and the weakly over-penalized symmetric interior penalty (WOP-

SIP) scheme [1] for the approximation of a regular solution to a fourth-order semilinear

problem with the biharmonic operator as the leading term. In comparison to [8], this

article includes dG/C0IP/WOPSIP schemes and more general source terms that allow

single forces. It thereby continues [11] for the linear biharmonic equation to semilin-

ear problems and, for the first time, establishes quasi-best approximation results for a

discretisation by the Morley/dG/C0IP schemes with smoother-type modifications in

the nonlinearities.

A general source term F ∈ H−2(�) cannot be immediately evaluated at a possibly

discontinuous test function vh ∈ Vh �⊂ H2
0 (�) for the nonconforming FEMs of this

paper. The post-processing procedure in [3] enables a new C0IP method for right-hand

sides in H−2(�). The articles [25–27] employ a map Q, referred to as a smoother, that

transforms a nonsmooth function yh to a smooth version Qyh . The discrete schemes

are modified by replacing F with F ◦ Q and the quasi-best approximation follows for

Morley and C0IP schemes for linear problems in the energy norm. The quasi-optimal

smoother Q = J IM in [11] for dG schemes is based on a (generalised) Morley

interpolation operator IM and a companion operator J from [12, 19].

In addition to the smoother Q in the right-hand side, this article introduces operators

R, S ∈ {id, IM, J IM} in the trilinear form Ŵpw(Ruh, Ruh, Svh) that lead to nine new

discretizations for each of the four discretization schemes (Morley/dG/C0IP/WOPSIP)

in two applications. Here R, S = id means no smoother, IM is averaging in the Mor-

ley finite element space, while J IM is the quasi-optimal smoother. The simultaneous

analysis applies to the stream function vorticity formulation of the 2D Navier-Stokes

equations [6, 13, 14] and von Kármán equations [16, 23] defined on a bounded polyg-

onal Lipschitz domain � in the plane. For S = J IM and all R ∈ {id, IM, J IM}, the

Morley/dG/C0IP schemes allow for the quasi-best approximation

‖u − uh‖X̂ ≤ Cqo min
xh∈Xh

‖u − xh‖X̂ . (1.1)

Duality arguments lead to optimal convergence rates in weaker Sobolev norm estimates

for the discrete schemes with specific choices of R in the trilinear form summarised

in Table 1. The comparison results suggest that, amongst the lowest-order methods

for fourth-order semilinear problems with trilinear nonlinearity, the attractive Morley

FEM is the simplest discretization scheme with optimal error estimates in (piecewise)

energy and weaker Sobolev norms.

For F ∈ H−r (�) with 2−σ ≤ r ≤ 2 (with the index of elliptic regularity σreg > 0

and σ := min{σreg, 1} > 0 ) and for the biharmonic, the 2D Navier-Stokes, and the

von Kármán equations with homogeneous Dirichlet boundary conditions, it is known

that the exact solution belongs to H2
0 (�) ∩ H4−r (�).
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Table 1 Summary for Navier-Stokes and von Kármán eqn from Sects. 8 and 9 with F ∈ H−r (�) for

2 − σ ≤ r , s ≤ 2 and R, S ∈ {id, IM, J IM} arbitrary unless otherwise specified

Method Results

Quasi-best for S = J IM ‖u − uh‖H s (T )

Morley dG/C0IP (1.1) O(h
min{4−2r ,4−r−s}
max )

WOPSIP Perturbed

Theorem 8.11.a & 9.4.a

O(h2−r
max) for R = id,

O(h
min{4−2r ,4−r−s}
max ) for R ∈ {IM, J IM}

Organisation. The remaining parts are organised as follows. Section 2 discusses an

abstract discrete inf-sup condition for linearised problems. Section 3 introduces the

main results (A)-(C) of this article. Section 4 discusses the quadratic convergence of

Newton’s scheme and the unique existence of a local discrete solution uh that approx-

imates a regular root u ∈ H2
0 (�) for data F ∈ H−2(�). Section 5 presents an abstract

a priori error control in the piecewise energy norm with a quasi-best approximation

for S = J IM in (1.1). Section 6 discusses the goal-oriented error control and derives

an a priori error estimate in weaker Sobolev norms. There are at least two reasons

for this abstract framework enfolded in Sects. 2–6. First it minimizes the repetition

of mathematical arguments in two important applications and four popular discrete

schemes. Second, it provides a platform for further generalizations to more general

smooth semilinear problems as it derives all the necessities for the leading terms in the

Taylor expansion of a smooth semilinearity. Section 7 presents preliminiaries, triangu-

lations, discrete spaces, the conforming companion, discrete norms and some auxiliary

results on IM and J . Sections 8 and 9 apply the abstract results to the stream func-

tion vorticity formulation of the 2D Navier-Stokes and the von Kármán equations for

the Morley/dG/C0IP/WOPSIP approximations. They contain comparison results and

convergence rates displayed in Table 1.

2 Stability

This section establishes an abstract discrete inf-sup condition under the assumptions

(2.1)–(2.3), (2.5), (2.8) and (H1)-(H3) stated below. This is a key step and has conse-

quences for second-order elliptic problems (as in [8, Section 2]) and in this paper for

the well-posedness of the discretization. In comparison to [8] that merely addresses

nonconforming FEM, the proof of the stability in this section applies to all the discrete

schemes. Let X̂ (resp. Ŷ ) be a real Banach space with norm ‖ • ‖X̂ (resp. ‖ • ‖Ŷ )

and suppose X and Xh (resp. Y and Yh) are two complete linear subspaces of X̂

(resp. Ŷ ) with inherited norms ‖ • ‖X :=
(
‖ • ‖X̂

)
|X and ‖ • ‖Xh

:=
(
‖ • ‖X̂

)
|Xh

(resp.

‖ • ‖Y :=
(
‖ • ‖Ŷ

)
|Y and ‖ • ‖Yh

:=
(
‖ • ‖Ŷ

)
|Yh

); X + Xh ⊆ X̂ and Y + Yh ⊆ Ŷ .

Table 2 summarizes the bounded bilinear forms and associated operators with

norms. Let the linear operators A ∈ L(X; Y ∗) and A + B ∈ L(X; Y ∗) be associ-

ated to the bilinear forms a and a + b and suppose A and A + B are invertible so that

the inf-sup conditions
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Table 2 Bilinear forms, operators, and norms

Bilinear form Domain Associated operator Operator norm

apw X̂ × Ŷ − −

a:=apw|X×Y X × Y
A ∈ L(X; Y ∗)

Ax = a(x, •) ∈ Y ∗ ‖A‖:=‖A‖L(X;Y ∗)

ah Xh × Yh
Ah ∈ L(Xh; Y ∗

h
)

Ah xh = ah(xh , •) ∈ Y ∗
h

−

b̂ X̂ × Ŷ – ‖b̂‖:=‖b̂‖X̂×Ŷ

b := b̂|X×Y X × Y
B ∈ L(X; Y ∗)

Bx = b(x, •) ∈ Y ∗ ‖b‖:=‖b‖X×Y

0 < α:= inf
x∈X

‖x‖X =1

sup
y∈Y

‖y‖Y =1

a(x, y) and 0 < β:= inf
x∈X

‖x‖X =1

sup
y∈Y

‖y‖Y =1

(a + b)(x, y) (2.1)

hold. Assume that the linear operator Ah : Xh → Y ∗
h is invertible and

0 < α0 ≤ αh := inf
xh∈Xh

‖xh‖Xh
=1

sup
yh∈Yh

‖yh‖Yh
=1

ah(xh, yh) (2.2)

holds for some universal constant α0. Let the linear operators P ∈ L(Xh; X), Q ∈
L(Yh; Y ), R ∈ L(Xh; X̂), S ∈ L(Yh; Ŷ ) and the constants �P,�Q,�R,�S ≥ 0

satisfy

‖(1 − P)xh‖X̂ ≤ �P‖x − xh‖X̂ for all xh ∈ Xh and x ∈ X , (2.3)

‖(1 − Q)yh‖Ŷ ≤ �Q‖y − yh‖Ŷ for all yh ∈ Yh and y ∈ Y , (2.4)

‖(1 − R)xh‖X̂ ≤ �R‖x − xh‖X̂ for all xh ∈ Xh and x ∈ X , (2.5)

‖(1 − S)yh‖Ŷ ≤ �S‖y − yh‖Ŷ for all yh ∈ Yh and y ∈ Y . (2.6)

Suppose the operator IXh
∈ L(X; Xh), the constants �1, δ2, δ3 ≥ 0, the above

bilinear forms a, ah, b̂, and the linear operator A from Table 2 satisfy, for all xh ∈
Xh, yh ∈ Yh, x ∈ X , and y ∈ Y , that

(H1) ah(xh, yh) − a(Pxh, Qyh) ≤ �1‖xh − Pxh‖X̂‖yh‖Yh
,

(H2) δ2:= sup
xh∈Xh

‖xh‖Xh
=1

‖(1 − IXh
)A−1(̂b(Rxh, •)|Y )‖X̂ ,

(H3) δ3:= sup
xh∈Xh

‖xh‖Xh
=1

‖b̂(Rxh, (Q − S) •
)
‖Y ∗

h
.

In applications, we establish that δ2 and δ3 are sufficiently small. Given α, β, αh , �P,

�1, �R, δ2, δ3 from above and the norms ‖A‖ and ‖b̂‖ from Table 2, define

β̂:=
β

�Pβ + ‖A‖
(
1 + �P

(
1 + α−1‖b̂‖(1 + �R)

)) , (2.7)
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β0:=αh β̂ − δ2(‖Q∗ A‖(1 + �P) + αh + �1�P) − δ3 (2.8)

with the adjoint Q∗ of Q. In all applications of this article, 1/α, 1/β, 1/αh , �P,

�Q, �R, �S, �1, and ‖Q∗ A‖ are bounded from above by generic constants, while

δ2 and δ3 are controlled in terms of the maximal mesh-size hmax of an underlying

triangulation and tend to zero as hmax → 0. Hence, β0 > 0 is positive for sufficiently

fine triangulations and even bounded away from zero, β0 � 1. (Here β0 � 1 means

β0 ≥ C for some positive generic constant C .) This enables the following discrete

inf-sup condition.

Theorem 2.1 (discrete inf-sup condition) Under the aforementioned notation, (2.1)–

(2.3), (2.5), (2.8) and (H1)–(H3) imply the stability condition

βh := inf
xh∈Xh

‖xh‖Xh
=1

sup
yh∈Yh

‖yh‖Yh
=1

(ah(xh, yh) + b̂(Rxh, Syh)) ≥ β0. (2.9)

Before the proof of Theorem 2.1 completes this section, some remarks on the particular

choices of R and S are in order to motivate the general description.

Example 2.2 (quasi-optimal smoother J IM) This paper follows [11] in the definition

of the quasi-optimal smoother P = Q = J IM in the applications with X = Y =
V =: H2

0 (�) for the biharmonic operator A and the linearisation B of the trilinear

form. Then (2.3)–(2.4) follow in Sect. 7.3 below; cf. Definition 7.2 (resp. Lemma 7.4)

for the definition of the Morley interpolation IM (resp. the companion operator J ).

Example 2.3 (no smoother in nonlinearity) The natural choice in the setting of Example

2.2 reads R = id = S [8]. Then �R = 0 = �S in (2.5)–(2.6) and a priori error

estimates will be available for the respective discrete energy norms. However, only

a few optimal convergence results shall follow for the error in the piecewise weaker

Sobolev norms, e.g., for the Morley scheme for the Navier-Stokes (Theorem 8.5.c)

and for the von Kármán equations (Theorem 9.3.b).

Example 2.4 (smoother in nonlinearity) The choices R = P and S = Q lead to

�R = �P and �S = �Q in (2.5)–(2.6), while δ3 = 0 in (H3). This allows for optimal

a priori error estimates in the piecewise energy and in weaker Sobolev norms and this

is more than an academic exercise for a richer picture on the respective convergence

properties; cf. [10] for exact convergence rates for the Morley FEM. This is important

for the analysis of quasi-orthogonality in the proof of optimal convergence rates of

adaptive mesh-refining algorithms in [9].

Example 2.5 (simpler smoother in nonlinearity) The realisation of R = S = P = J IM

in the setting of Example 2.2 may lead to cumbersome implementations in the nonlinear

terms and so the much cheaper choice R = S = IM shall also be discussed in the

applications below.

Remark 2.6 (on (H1)) The paper [11] adopts [25]-[27] and extends those results to

the dG scheme as a preliminary work on linear problems for this paper. The resulting

abstract condition (H1) therein is a key property to analyze the linear terms simulta-

neously.
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Remark 2.7 (comparison with [8]) The set of hypotheses for the discrete inf-sup con-

dition in this article differs from those in [8]. This paper allows smoothers in the

nonlinear terms and also applies to dG/C0IP/WOPSIP schemes.

Remark 2.8 (consequences of (2.3)–(2.6)) The estimates in (2.3)–(2.6) give rise to a

typical estimate utilised throughout the analysis in this paper. For instance, (2.3) (resp.

(2.5)) and a triangle inequality show, for all x ∈ X and xh ∈ Xh , that

‖x − Pxh‖X ≤ (1 + �P)‖x − xh‖X̂ (resp. ‖x − Rxh‖X̂≤(1 + �R)‖x − xh‖X̂ ).

(2.10)

The analog (2.4) (resp. (2.6)) leads, for all y ∈ Y and yh ∈ Yh , to

‖y − Qyh‖Y ≤ (1 + �Q)‖y − yh‖Ŷ (resp. ‖y − Syh‖Ŷ ≤ (1 + �S)‖y − yh‖Ŷ ).

(2.11)

Proof of Theorem 2.1. The proof of Theorem 2.1 departs as in [8, Theorem 2.1] for

nonconforming schemes for any given xh ∈ Xh with ‖xh‖Xh
= 1. Define

x :=Pxh, η:=A−1(Bx), ξ :=A−1(̂b(Rxh, •)|Y ) ∈ X , and ξh :=IXh
ξ ∈ Xh .

The definitions of ξ ∈ X and ξh ∈ Xh lead in (H2) to

‖ξ − ξh‖X̂ ≤ δ2. (2.12)

The second inf-sup condition in (2.1) and Aη = Bx ∈ Y ∗ result in

β‖x‖X ≤ ‖Ax + Bx‖Y ∗ = ‖A(x + η)‖Y ∗ ≤ ‖A‖‖x + η‖X

with the operator norm of A in the last step. This and triangle inequalities imply

(β/‖A‖) ‖x‖X ≤ ‖x + η‖X ≤ ‖x − xh‖X̂ + ‖xh + ξ‖X̂ + ‖ξ − η‖X . (2.13)

The above definitions of ξ and η guarantee a(ξ − η, •) = b̂(Rxh − x, •)|Y ∈ Y ∗.

This, (2.1), and the norm ‖b̂‖ of the bilinear form b̂ show

α‖ξ − η‖X ≤ ‖b̂(x − Rxh, •)‖Y ∗ ≤ ‖b̂‖‖x − Rxh‖X̂ ≤ ‖b̂‖(1 + �R)‖x − xh‖X̂

with (2.10) in the last step. Note that the definition x = Pxh and (2.3) imply

‖x − xh‖X̂ ≤ �P‖xh + ξ‖X̂ . (2.14)

The combination of (2.13)–(2.14) results in

‖x‖X ≤ ‖xh + ξ‖X̂ (1 + �P(1 + α−1‖b̂‖(1 + �R)))‖A‖/β. (2.15)
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A triangle inequality, (2.14)–(2.15), and the definition of β̂ in (2.7) lead to

1 = ‖xh‖Xh
≤ ‖x − xh‖X̂ + ‖x‖X ≤ β̂−1‖xh + ξ‖X̂ .

This in the first inequality below and a triangle inequality plus (2.12) show

β̂ ≤ ‖xh + ξ‖X̂ ≤ ‖xh + ξh‖Xh
+ ‖ξ − ξh‖X̂ ≤ ‖xh + ξh‖Xh

+ δ2. (2.16)

The condition (2.2) implies for xh + ξh ∈ Xh and for any ǫ > 0, the existence of some

φh ∈ Yh such that ‖φh‖Yh
≤ 1+ǫ and αh‖xh +ξh‖Xh

= ah(xh +ξh, φh). Elementary

algebra shows

αh‖xh + ξh‖Xh
= ah(xh, φh)+ah(ξh, φh)−a(Pξh, Qφh)+a(Pξh − ξ, Qφh)

+a(ξ, Qφh) (2.17)

and motivates the control of the terms below.

Hypothesis (H1) and (2.3) imply

ah(ξh, φh) − a(Pξh, Qφh) ≤ �1�P‖ξ − ξh‖X̂‖φh‖Yh
≤ �1�Pδ2(1 + ǫ) (2.18)

with (2.12) and ‖φh‖Yh
≤ 1 + ǫ in the last step above. The boundedness of Q∗ A ∈

L(X; Y ∗
h ), ‖φh‖Yh

≤ 1+ǫ, (2.10), and (2.12) for ‖ξ −Pξh‖X ≤ (1+�P)‖ξ −ξh‖X̂ ≤
(1 + �P)δ2 reveal

a(Pξh − ξ, Qφh) ≤ ‖Q∗ A‖(1 + �P)δ2(1 + ǫ). (2.19)

The definition of ξ shows that a(ξ, Qφh) = b̂(Rxh, Qφh). This, ‖φh‖Yh
≤ 1 + ǫ, and

(H3) imply

a(ξ, Qφh) ≤ b̂(Rxh, Sφh) + δ3(1 + ǫ). (2.20)

The combination of (2.17)- (2.20) reads

αh‖xh + ξh‖Xh
≤ ah(xh, φh) + b̂(Rxh, Sφh) +

(
(‖Q∗ A‖(1 + �P)

+ �1�P)δ2 + δ3

)
(1 + ǫ). (2.21)

This, (2.16), and ‖φh‖Yh
≤ 1 + ǫ imply αh β̂ ≤ (‖ah(xh, •) + b̂(Rxh, S•)‖Y ∗

h
+

(‖Q∗ A‖(1 + �P) + �1�P)δ2 + δ3

)
(1 + ǫ) + αhδ2. This and (2.8) demonstrate

αh β̂ ≤ (‖ah(xh, •) + b̂(Rxh, S•)‖Y ∗
h

+ αh β̂ − β0)(1 + ǫ)−ǫαhδ.

At this point, we may choose ǫ ց 0 and obtain

β0 ≤ ‖ah(xh, •) + b̂(Rxh, S•)‖Y ∗
h
.
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Since xh ∈ Xh is arbitrary with ‖xh‖Xh
= 1, this proves the discrete inf-sup condition

(2.9). (In this section Yh is a closed subspace of the Banach space Ŷ and not necessarily

reflexive. In the sections below, Yh is finite-dimensional and the above arguments apply

immediately to ǫ = 0.) ⊓⊔

3 Main results

This section introduces the continuous and discrete nonlinear problems, associated

notations, and states the main results of this article in (A)-(C) below. The paper has

two parts written in abstract results of Sects. 2, 4–6 and their applications in Sects. 8-9.

In the first part, the hypotheses (H1)-(H3) in the setting of Sect. 2 and the hypothesis

(H4) stated below guarantee the existence and uniqueness of an approximate solution

for the discrete problem, feasibility of an iterated Newton scheme, and an a priori

energy norm estimate in (A)-(B). An additional hypothesis (Ĥ1) enables a priori error

estimates in weaker Sobolev norms stated in (C). The second part in Sects. 8-9 verifies

the abstract results for the 2D Navier-Stokes equations in the stream function vorticity

formulation and for the von Kármán equations.

Adopt the notation on the Banach spaces X and Y (with Xh, X̂ and Yh, Ŷ ) of the

previous section and suppose that the quadratic function N : X → Y ∗ is

N (x):=Ax + Ŵ(x, x, •) − F(•) for all x ∈ X (3.1)

with a bounded linear operator A ∈ L(X; Y ∗), a bounded trilinear form Ŵ : X × X ×
Y → R, and a linear form F ∈ Y ∗. Suppose there exists a bounded trilinear form

Ŵ̂ : X̂ × X̂ × Ŷ → R with Ŵ = Ŵ̂|X×X×Y , Ŵh = Ŵ̂|Xh×Xh×Yh
, and let

‖Ŵ̂‖:=‖Ŵ̂‖X̂×X̂×Ŷ := sup
x̂∈X̂

‖x̂‖X̂ =1

sup
ξ̂∈X̂

‖̂ξ‖X̂ =1

sup
ŷ∈Ŷ

‖ŷ‖Ŷ =1

Ŵ̂(̂x, ξ̂ , ŷ) < ∞.

The linearisation of Ŵ̂ at u ∈ X defines the bilinear form b̂ : X̂ × Ŷ → R,

b̂(•, •):=Ŵ̂(u, •, •) + Ŵ̂(•, u, •). (3.2)

The boundedness of Ŵ̂(•, •, •) applies to (3.2) and provides ‖b̂‖ ≤ 2‖Ŵ̂‖‖u‖X .

Definition 3.1 (regular root) A function u ∈ X is a regular root to (3.1), if u solves

N (u; y) = a(u, y) + Ŵ(u, u, y) − F(y) = 0 for ally ∈ Y (3.3)

and the Frechét derivative DN (u) =: (a + b)(•, •) defines an isomorphism A +
B and in particular satisfies the inf-sup condition (2.1) for b:=b̂|X×Y and b̂ from

(3.2). ⊓⊔

Abbreviate (a + b)(x, y):=a(x, y) + b(x, y) etc. Several discrete problems in this

article are defined for different choices of R and S with (2.5)–(2.6) to approximate the
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regular root u to N . In the applications of Sects. 8-9, R, S ∈ {id, IM, J IM} lead to

eight new discrete nonlinearities. Let Xh and Yh be finite-dimensional spaces and let

Nh(xh):=ah(xh, •) + Ŵ̂(Rxh, Rxh, S•) − F(Q•) ∈ Y ∗
h . (3.4)

The discrete problem seeks a root uh ∈ Xh to Nh ; in other words it seeks uh ∈ Xh

that satisfies

Nh(uh; yh):=ah(uh, yh) + Ŵ̂(Ruh, Ruh, Syh) − F(Qyh) = 0 for all yh ∈ Yh .

(3.5)

The local discrete solution uh ∈ Xh depends on R and S (suppressed in the notation).

Suppose

(H4) ∃xh ∈ Xh such that δ4:=‖u − xh‖X̂ < β0/2(1 + �R)‖Ŵ̂‖‖R‖‖S‖,

so that, in particular,

β1:=β0 − 2(1 + �R)‖Ŵ̂‖‖R‖‖S‖δ4 > 0. (3.6)

The non-negative parameters �1, δ2, δ3, δ4, β, and ‖b̂‖ depend on the regular root u

to N (suppressed in the notation).

The hypotheses (H1)-(H4) with sufficiently small δ2, δ3, δ4 imply the results stated

in (A)-(B) below for parameters ǫ1, ǫ2, δ, ρ, Cqo > 0 and 0 < κ < 1, such that

(A)-(B) hold for any underlying triangulation T with maximum mesh-size hmax ≤ δ

in the applications of this article.

(A) local existence of a discrete solution. There exists a unique discrete solution uh ∈
Xh to Nh(uh) = 0 in (3.5) with ‖u − uh‖X̂ ≤ ǫ1. For any initial iterate vh ∈ Xh

with ‖uh − vh‖Xh
≤ ρ, the Newton scheme converges quadratically to uh .

(B) a priori error control in energy norm. The continuous (resp. discrete) solution

u ∈ X (resp. uh ∈ Xh) with ‖u − uh‖X̂ ≤ ǫ2:= min
{
ǫ1,

κβ1

(1+�R)2‖S‖‖Ŵ̂‖

}
satisfies

‖u − uh‖X̂ ≤ Cqo min
xh∈Xh

‖u − xh‖X̂ + β−1
1 (1 − κ)−1‖Ŵ̂(u, u, (S − Q)•)‖Y ∗

h

with a lower bound β1 of βh defined in (3.6). The quasi-best approximation result

(1.1) holds for S = Q.

(C) a priori error control in weaker Sobolev norms. In addition to (H1)–(H4), suppose

the existence of �5 > 0 such that, for all xh ∈ Xh , yh ∈ Yh , x ∈ X , and y ∈ Y ,

(Ĥ1) ah(xh, yh) − a(Pxh, Qyh) ≤ �5‖x − xh‖X̂‖y − yh‖Ŷ .

For any G ∈ X∗, if z ∈ Y solves the dual linearised problem a(•, z) + b(•, z) =
G(•) in X∗, then any zh ∈ Yh satisfies

‖u − uh‖Xs ≤ ω1(‖u‖X , ‖uh‖Xh
)‖z − zh‖Ŷ ‖u − uh‖X̂

+ ω2(‖zh‖Yh
)‖u − uh‖2

X̂
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+ ‖uh − Puh‖Xs + Ŵ̂(u, u, (S − Q)zh)

+ Ŵ̂(Ruh, Ruh, Qzh) − Ŵ(Puh, Puh, Qzh)

with appropriate weights defined in (6.2) below. Here Xs is a Hilbert space with

X + Xh ⊂ Xs.

The abstract results (A)-(C) are established in Theorems 4.1, 5.1, and 6.2. A sum-

mary of their consequences in the applications in Sects. 8-9 for a triangulation with

sufficiently small maximal mesh-size hmax is displayed in Table 1.

4 Existence and uniqueness of discrete solution

This section applies the Newton-Kantorovich convergence theorem to establish (A).

Let u ∈ X be a regular root to N . Let (2.3), (2.5), and (H1)-(H4) hold with parameters

�P, �R, �1, δ2, δ3, δ4 ≥ 0. Define L:=2‖Ŵ̂‖‖R‖2‖S‖, m:=L/β1, and

ǫ0 := β−1
1

(
(�1�P + ‖Q∗ A‖(1 + �P) + (1 + �R)(‖R‖‖S‖‖xh‖Xh

+ ‖Q‖‖u‖X )‖Ŵ̂‖
)
δ4 + ‖xh‖Xh

δ3/2
)
. (4.1)

In this section (and in Sect. 5 below), Q ∈ L(Yh; Y ) (resp. S ∈ L(Yh; Ŷ )) is bounded,

but (2.4) (resp. (2.6)) is not employed.

Theorem 4.1 (existence and uniqueness of a discrete solution) (i) If ǫ0m ≤ 1/2, then

there exists a root uh ∈ Xh of Nh with ‖u − uh‖X̂ ≤ ǫ1:=δ4 + (1 −
√

1 − 2ǫ0m)/m.

(ii) If ǫ0m < 1/2, then given any vh ∈ Xh with ‖uh − vh‖Xh
≤ ρ:=(1 +√

1 − 2ǫ0m)/m > 0, the Newton scheme with initial iterate vh converges quadrati-

cally to the root uh to Nh in (i).

(iii) If ǫ1m ≤ 1/2, then there exists at most one root uh to Nh with ‖u − uh‖X̂ ≤ ǫ1.

The proof of Theorem 4.1 applies the well-known Newton-Kantorovich conver-

gence theorem found, e.g., in [21, Subsection 5.5] for X = Y = R
n and in [28,

Subsection 5.2] for Banach spaces. The notation is adapted to the present situation.

Theorem 4.2 (Kantorovich (1948)) Assume the Frechét derivative DNh(xh) of Nh at

some xh ∈ Xh satisfies

‖DNh(xh)−1‖L(Y ∗
h ;Xh) ≤ 1/β1 and ‖DNh(xh)−1 Nh(xh)‖Xh

≤ ǫ0. (4.2)

Suppose that DNh is Lipschitz continuous with Lipschitz constant L and that 2ǫ0 L ≤
β1. Then there exists a root uh ∈ B(x1, r−) of Nh in the closed ball around the first

iterate x1:=xh − DNh(xh)−1 Nh(xh) of radius r−:=(1 −
√

1 − 2ǫ0m)/m − ǫ0 and

this is the only root of Nh in B(xh, ρ) with ρ:=(1 +
√

1 − 2ǫ0m)/m. If 2ǫ0L < β1,

then the Newton scheme with initial iterate xh leads to a sequence in B(xh, ρ) that

converges R-quadratically to uh . ⊓⊔

123



Unified a priori analysis of four second-order...

Proof of Theorem 4.1. Step 1 establishes (4.2). The bounded trilinear form Ŵ̂ leads

to the Frechét derivative DNh(xh) ∈ L(Xh; Y ∗
h ) of Nh from (3.4) evaluated at any

xh ∈ Xh for all ξh ∈ Xh , ηh ∈ Yh with

DNh(xh; ξh, ηh) = ah(ξh, ηh) + Ŵ̂(Rxh, Rξh, Sηh) + Ŵ̂(Rξh, Rxh, Sηh). (4.3)

For any x1
h , x2

h , ξh ∈ Xh and ηh ∈ Yh , (4.3) implies the global Lipschitz continuity of

DNh with Lipschitz constant L:=2‖Ŵ̂‖‖R‖2‖S‖, and so

|DNh(x1
h; ξh, ηh) − DNh(x2

h ; ξh, ηh)| ≤ L‖x1
h − x2

h‖Xh
‖ξh‖Xh

‖ηh‖Yh
.

Recall xh from (H4) with δ4 = ‖u − xh‖X̂ . For this xh ∈ Xh , (2.10) leads to ‖u −
Rxh‖X̂ ≤ (1 + �R)δ4. This and the boundedness of Ŵ̂(•, •, •) show

Ŵ̂(u − Rxh, Rξh, Sηh) + Ŵ̂(Rξh, u − Rxh, Sηh)

≤ 2δ4(1 + �R)‖Ŵ̂‖‖R‖‖S‖‖ξh‖Xh
‖ηh‖Yh

.

The discrete inf-sup condition in Theorem 2.1, elementary algebra, and the above

displayed estimate establish a positive inf-sup constant

0 < β1 = β0 − 2(1 + �R)‖Ŵ̂‖‖R‖‖S‖δ4 ≤ inf
ξh∈Xh

‖ξh‖Xh
=1

sup
ηh∈Yh

‖ηh‖Yh
=1

DNh(xh; ξh, ηh)

(4.4)

for the discrete bilinear form (4.3). The inf-sup constant β1 > 0 in (4.4) is known

to be (an upper bound of the) reciprocal of the operator norm of DNh(xh) and that

provides the first estimate in (4.2). It also leads to

‖DNh(xh)−1 Nh(xh)‖Xh
≤ β−1

1 ‖Nh(xh)‖Y ∗
h
. (4.5)

To establish the second inequality in (4.2), for any yh ∈ Yh with ‖yh‖Yh
= 1, set

y:=Qyh ∈ Y . Since N (u; y) = 0, (3.3)-(3.4) reveal

Nh(xh; yh) = Nh(xh; yh) − N (u; y) = ah(xh, yh) − a(u, y)

+ Ŵ̂(Rxh, Rxh, Syh) − Ŵ(u, u, y). (4.6)

The combination of (H1) and (2.3) results in

ah(xh, yh) − a(u, Qyh) = ah(xh, yh) − a(Pxh, Qyh) − a(u − Pxh, Qyh)

≤ �1�P‖u − xh‖X̂ + ‖Q∗ A‖‖u − Pxh‖X

with the operator norm ‖Q∗ A‖ of Q∗ A in L(X; Y ∗
h ) in the last step. Utilize (2.10) and

(H4) to establish ‖u − Pxh‖X ≤ (1 + �P)δ4. This and the previous estimates imply

ah(xh, yh) − a(u, Qyh) ≤ (�1�P + ‖Q∗ A‖(1 + �P))δ4.
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Elementary algebra and the boundedness of Ŵ̂(•, •, •), (2.5), and (H3)-(H4) show

2(Ŵ̂(Rxh, Rxh, Syh) − Ŵ̂(u, u, y))

= Ŵ̂(Rxh − u, Rxh, Syh) + Ŵ̂(Rxh, Rxh − u, Syh)

+ Ŵ̂(u, Rxh − u, y) + Ŵ̂(Rxh − u, u, y) − b̂(Rxh, (Q − S)yh)

≤ 2δ4(1 + �R)
(
‖R‖‖S‖‖xh‖Xh

+ ‖Q‖‖u‖X

)
‖Ŵ̂‖ + δ3‖xh‖Xh

.

A combination of the two above displayed estimates in (4.6) reveals

|Nh(xh; yh)|≤(�1�P + ‖Q∗ A‖(1 + �P)

+(1 + �R)(‖R‖‖S‖‖xh‖Xh
+ ‖Q‖‖u‖X )‖Ŵ̂‖)δ4 +

1

2
‖xh‖Xh

δ3.

This implies ‖Nh(xh)‖Y ∗
h

≤ β1ǫ0 with ǫ0 ≥ 0 from (4.1). The latter bound leads in

(4.5) to the second condition in (4.2).

Step 2 establishes the assertion (i) and (ii). Since ǫ0m ≤ 1/2, r−, ρ ≥ 0 is well-

defined, 2ǫ0 L ≤ β1, and hence Theorem 4.2 applies.

We digress to discuss the degenerate case ǫ0 = 0 where (4.1) implies δ4 = 0. An

immediate consequence is that (H4) results in u = xh ∈ Xh . The proof of Step 1

remains valid and Nh(xh) = 0 (since ǫ0 = 0) provides that xh = u is the discrete

solution uh . Observe that in this particular case, the Newton iterates form the constant

sequence u = xh = x1 = x2 = · · · and Theorem 4.2 holds for the trivial choice

r− = 0.

Suppose ǫ0 > 0. For ǫ0m ≤ 1/2, Theorem 4.2 shows the existence of a root uh to

Nh in B(x1, r−) that is the only root in B(xh, ρ). This, ‖x1 − xh‖Xh
≤ ǫ0, with ǫ0

from (4.1), for the Newton correction x1 − xh in the second inequality of (4.2), and

triangle inequalities result in

‖u − uh‖X̂ ≤ ‖u − xh‖X̂ + ‖x1 − xh‖Xh
+ ‖x1 − uh‖Xh

≤ δ4 + (1 −
√

1 − 2ǫ0m)/m = ǫ1. (4.7)

This proves the existence of a discrete solution uh in Xh ∩ B(u, ǫ1) as asserted in (i).

Theorem 4.2 implies (i i).

Step 3 establishes the assertion (iii). Recall from Theorem 4.2 that the limit uh ∈
B(x1, r−) in (i)-(i i) is the only discrete solution in B(xh, ρ). Suppose there exists a

second solution ũh ∈ Xh ∩ B(u, ǫ1) to Nh (̃uh) = 0. Since uh is unique in B(xh, ρ),

ũh lies outside B(xh, ρ). This and a triangle inequality show

1

m
≤ (1 +

√
1 − 2ǫ0m)/m = ρ < ‖xh − ũh‖X̂ ≤ ‖u − ũh‖X̂ + ‖u − xh‖X̂

≤ ǫ1 + δ4 ≤ 2ǫ1 ≤
1

m
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with 2mǫ1 ≤ 1 in the last step. This contradiction concludes the proof of (i i i). ⊓⊔

Remark 4.3 (error estimate) Recall δ4 from (H4) and ǫ0 from (4.1). An algebraic

manipulation in (4.7) reveals, for ǫ0m ≤ 1/2, that

‖u − uh‖X̂ ≤ δ4 +
2ǫ0

1 +
√

1 − 2ǫ0m
≤ δ4 + 2ǫ0.

In the applications of Sects. 8-9, this leads to the energy norm estimate.

Remark 4.4 (estimate on ǫ1) In the applications, (4.1) leads to ǫ0 � δ3 + δ4. This, the

definition of ǫ1 in Theorem 4.1, (4.7), and Remark 4.3 provide ǫ1 � δ3 + δ4.

5 A priori error control

This section is devoted to a quasi-best approximation up to perturbations (B). Recall

that the bounded bilinear form a : X × Y → R satisfies (2.1), the trilinear form

Ŵ : X × X × Y → R is bounded, and F ∈ Y ∗. The assumptions on the discretization

with ah : Xh × Yh → R with non-trivial finite-dimensional spaces Xh and Yh of

the same dimension dim(Xh) = dim(Yh) ∈ N are encoded in the stability and quasi-

optimality. The stability of ah and (2.2) mean α0 > 0 and the quasi-optimality assumes

P ∈ L(Xh; X) with (2.3), R ∈ L(Xh; X̂) with (2.5), S ∈ L(Yh; Ŷ ) , and Q ∈
L(Yh; Y ) (in this section, (2.4) and (2.6) are not employed). Recall β1 and ǫ1 from

(3.6) and Theorem 4.1.

Theorem 5.1 (a priori error control) Let u ∈ X be a regular root to (3.3),

let uh ∈ Xh solve (3.5), and suppose (H1), (2.2)-(2.3), (2.5), ‖u − uh‖X̂ ≤
ǫ2:= min

{
ǫ1,

κβ1

(1+�R)2‖S‖‖Ŵ̂‖

}
, and 0 < κ < 1. Then

‖u − uh‖X̂ ≤ Cqo min
xh∈Xh

‖u − xh‖X̂ + β−1
1 (1 − κ)−1‖Ŵ̂(u, u, (S − Q)•)‖Y ∗

h

holds for Cqo = C ′
qoβ

−1
1 (1 − κ)−1(β1 + 2(1 + �R)‖S‖‖Ŵ̂‖‖u‖X ) with C ′

qo:=1 +
α−1

0 (�1�P + ‖Q∗ A‖(1 + �P)).

The theorem establishes a quasi-best approximation result (1.1) for S = Q. The proof

utilizes a quasi-best approximation result from [11] for linear problems.

Lemma 5.2 (quasi-best approximation for linear problem [11]) If u∗ ∈ X and G(•) =
a(u∗, •) ∈ Y ∗, u∗

h ∈ Xh and ah(u∗
h, •) = G(Q•) ∈ Y ∗

h , then (2.2)-(2.3) and (H1)

imply

(QO) ‖u∗ − u∗
h‖X̂ ≤ C ′

qo inf
xh∈Xh

‖u∗ − xh‖X̂ . (5.1)
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Proof This is indicated in [11, Theorem 5.4.a] for Hilbert spaces and we give the proof

for completeness. For any xh ∈ Xh , the inf-sup condition (2.2) leads for eh :=xh −u∗
h ∈

Xh to some ‖yh‖Yh
≤ 1 such that

α0‖eh‖Xh
≤ ah(xh, yh) − ah(u∗

h, yh).

Since ah(u∗
h, yh) = G(Qyh) = a(u∗, Qyh), this implies

α0‖eh‖Xh
≤ ah(xh, yh) − a(Pxh, Qyh) + a(Pxh − u∗, Qyh)

≤ �1‖xh − Pxh‖X̂ + ‖Q∗ A‖‖u∗ − Pxh‖X

with (H1), the operator norm ‖Q∗ A‖ of Q∗ A = a(•, Q•), and ‖yh‖Yh
≤ 1 in the last

step. Recall (2.3) and ‖u∗ − Pxh‖X ≤ (1 + �P)‖u∗ − xh‖X̂ from (2.10) to deduce

α0‖eh‖Xh
≤ (�1�P + (1 + �P)‖Q∗ A‖)‖u∗ − xh‖X̂ .

This and a triangle inequality ‖u∗ − u∗
h‖X̂ ≤ ‖eh‖Xh

+ ‖u∗ − xh‖X̂ conclude the

proof. ⊓⊔

Proof of Theorem 5.1. Given a regular root u ∈ X to (3.3), G(•):=F(•)−Ŵ(u, u, •) ∈
Y ∗ is an appropriate right-hand side in the problem a(u, •) = G(•) with a discrete

solution u∗
h ∈ Xh to ah(u∗

h, •) = G(Q•) in Yh . Lemma 5.2 implies (5.1) with u∗

substituted by u, namely

‖u − u∗
h‖X̂ ≤ C ′

qo inf
xh∈Xh

‖u − xh‖X̂ . (5.2)

Given the discrete solution uh ∈ Xh to (3.5) and the approximation u∗
h ∈ Xh from

above, let eh :=u∗
h − uh ∈ Xh . The stability of the discrete problem from Theorem 2.1

leads to the existence of some yh ∈ Yh with norm ‖yh‖Yh
≤ 1/βh for βh ≥ β0

from (2.9) and

‖eh‖Xh
= ah(eh, yh) + b̂(Reh, Syh)

= ah(eh, yh) + Ŵ̂(u, Reh, Syh) + Ŵ̂(Reh, u, Syh)

with (3.2) in the last step. The definition of u∗
h , G, and (3.5) show

ah(u∗
h, yh) = F(Qyh) − Ŵ(u, u, Qyh)

= ah(uh, yh) + Ŵ̂(Ruh, Ruh, Syh) − Ŵ(u, u, Qyh).

The combination of the two previous displayed identities and elementary algebra show

that

‖eh‖Xh
= Ŵ̂(Ruh, Ruh, Syh) − Ŵ̂(u, u, Syh) + Ŵ̂(u, Reh, Syh)

+ Ŵ̂(Reh, u, Syh) + Ŵ̂(u, u, (S − Q)yh)
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= Ŵ̂(u − Ruh, u − Ruh, Syh) + Ŵ̂(u, Ru∗
h − u, Syh)

+ Ŵ̂(Ru∗
h − u, u, Syh) + Ŵ̂(u, u, (S − Q)yh)

≤ (‖S‖‖Ŵ̂‖‖u − Ruh‖2
X̂

+ 2‖u‖X‖S‖‖Ŵ̂‖‖u − Ru∗
h‖X̂

+ ‖Ŵ̂(u, u, (S − Q)•)‖Yh∗ )/βh

with the boundedness of Ŵ̂(•, •, •) and ‖yh‖Yh
≤ 1/βh in the last step. This, ‖u −

Ruh‖X̂ ≤ (1+�R)‖u−uh‖X̂ (resp. ‖u− Ru∗
h‖X̂ ≤ (1+�R)‖u−u∗

h‖X̂ ) from (2.10),

β1 ≤ βh , and a triangle inequality show

β1‖u − uh‖X̂ ≤
(
β1 + 2(1+�R)‖S‖‖Ŵ̂‖‖u‖X̂

)
‖u−u∗

h‖X̂ +‖Ŵ̂(u, u, (S − Q)•)‖Y ∗
h

+ (1 + �R)2‖S‖‖Ŵ̂‖‖u − uh‖2
X̂
.

Recall the assumption on ‖u − uh‖X̂ ≤ ǫ2 to absorb the last term and obtain

‖u − uh‖X̂ ≤
(β1 + 2(1 + �R)‖S‖‖Ŵ̂‖‖u‖X )‖u − u∗

h‖X̂ + ‖Ŵ̂(u, u, (S − Q)•)‖Y ∗
h

β1 − ǫ2(1 + �R)2‖S‖‖Ŵ̂‖
.

This, the definition of ǫ2, and (5.2) conclude the proof. ⊓⊔

Remark 5.3 (estimate on ǫ2) The assumption of Theorem 5.1 and Remark 4.4 reveal

ǫ2 ≤ ǫ1 � δ3 + δ4 for the applications of Sects. 8, 9.

6 Goal-oriented error control

This section proves an a priori error estimate in weaker Sobolev norms based on a

duality argument. Suppose Y is reflexive throughout this section so that, given any

G ∈ X∗, there exists a unique solution z ∈ Y to the dual linearised problem

a(•, z) + b(•, z) = G(•) in X∗. (6.1)

Recall N from (3.1), A and B from Table 2 with (3.2), P , Q, R, and S with (2.3)–(2.6),

and (Ĥ1) from Sect. 3. Since u ∈ X is a regular root, the derivative A+ B ∈ L(X; Y ∗)
of N evaluated at u is a bijection and so is its dual operator A∗ + B∗ ∈ L(Y ; X∗).

Theorem 6.1 (goal-oriented error control) Let u ∈ X be a regular root to (3.3) and let

uh ∈ Xh (resp. z ∈ Y ) solve (3.5) (resp. (6.1)). Suppose (Ĥ1) and (2.3)–(2.6). Then,

any G ∈ X∗ and any zh ∈ Yh satisfy

G(u − Puh) ≤ ω1(||u||X , ||uh ||Xh
)‖u − uh‖X̂‖z − zh‖Ŷ + ω2(‖zh‖Yh

)‖u − uh‖2
X̂

+ Ŵ̂(u, u, (S − Q)zh) + Ŵ̂(Ruh, Ruh, Qzh) − Ŵ(Puh, Puh, Qzh)
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with the weights

ω1(‖u X ‖, ‖uh‖Xh
) := (1 + �P)(1 + �Q)(‖A‖ + 2‖Ŵ‖‖u‖X ) + �5 + (1 + �R)(�S + �Q)

× ‖Ŵ̂‖(‖Ruh‖X̂ + ‖u‖X ), ω2(‖zh‖Yh
):=‖Ŵ‖(1 + �P)2‖Qzh‖Y .

(6.2)

Proof Since z ∈ Y solves (6.1), elementary algebra with (3.3), (3.5), and any zh ∈ Yh

lead to

G(u − Puh) = (a + b)(u − Puh, z) = (a + b)(u − Puh, z − Qzh)

+ b(u − Puh, Qzh) +
(
ah(uh, zh) − a(Puh, Qzh)

)

+ Ŵ̂(Ruh, Ruh, Szh) − Ŵ(u, u, Qzh). (6.3)

The first term (a + b)(u − Puh, z − Qzh) on the right-hand side of (6.3) is bounded

by

(‖A‖ + 2‖Ŵ‖‖u‖X )‖u − Puh‖X‖z − Qzh‖Y

≤ (‖A‖ + 2‖Ŵ‖‖u‖X )(1 + �P)(1 + �Q)‖u − uh‖X̂‖z − zh‖Ŷ

with (2.10)–(2.11) in the last step. The hypothesis (Ĥ1) controls the third term on the

right-hand side of (6.3), namely

ah(uh, zh) − a(Puh, Qzh) ≤ �5‖u − uh‖X̂‖z − zh‖Ŷ .

Elementary algebra with (3.2) shows that the remaining terms Ŵ̂(Ruh, Ruh, Szh)−
Ŵ(u, u, Qzh) + b(u − Puh, Qzh) on the right-hand side of (6.3) can be re-written as

Ŵ̂(Ruh, Ruh, (S − Q)zh) + Ŵ̂(Ruh, Ruh, Qzh)

− Ŵ(Puh, Puh, Qzh) + Ŵ(u − Puh, u − Puh, Qzh). (6.4)

Elementary algebra with the first term on the right-hand side of (6.4) reveals

Ŵ̂(Ruh, Ruh, (S − Q)zh) = Ŵ̂(Ruh − u, Ruh, (S − Q)zh) + Ŵ̂(u, Ruh − u, (S − Q)zh)

+Ŵ̂(u, u, (S − Q)zh).

The boundedness of Ŵ̂(•, •, •), (2.4), (2.6), and (2.10) show

Ŵ̂(Ruh − u, Ruh, (S − Q)zh) = Ŵ̂(Ruh − u, Ruh, (S − I )zh)

+ Ŵ̂(Ruh − u, Ruh, (I − Q)zh)

≤ (�S + �Q)‖Ŵ̂‖(1 + �R)‖Ruh‖X̂ ‖u

− uh‖X̂ ‖z − zh‖Ŷ .

Ŵ̂(u, Ruh − u, (S − Q)zh) ≤ (�S + �Q)‖Ŵ̂‖(1 + �R)‖u‖X ‖u − uh‖X̂ ‖z − zh‖Ŷ .
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The boundedness of Ŵ(•, •, •) and (2.10) lead to

Ŵ(u − Puh, u − Puh, Qzh) ≤ ‖Ŵ‖(1 + �P)2‖u − uh‖2
X̂
‖Qzh‖Y .

A combination of the above estimates of the terms in (6.3) concludes the proof. ⊓⊔

An abstract a priori estimate for error control in weaker Sobolev norms concludes this

section.

Theorem 6.2 (a priori error estimate in weaker Sobolev norms) Let Xs be a Hilbert

space with X + Xh ⊂ Xs. Under the assumptions of Theorem 6.1, any zh ∈ Yh satisfies

‖u − uh‖Xs ≤ ω1(‖u X‖, ‖uh‖Xh
)‖u − uh‖X̂‖z − zh‖Ŷ

+ ω2(‖zh‖Yh
)‖u − uh‖2

X̂
+ ‖uh − Puh‖Xs

+ Ŵ̂(u, u, (S − Q)zh) + Ŵ̂(Ruh, Ruh, Qzh) − Ŵ(Puh, Puh, Qzh).

Proof Given u − Puh ∈ X ⊂ Xs, a corollary of the Hahn-Banach extension theorem

leads to some G ∈ X∗
s ⊂ X∗ with norm ‖G‖X∗

s
≤ 1 in X∗

s and G(u − Puh) =
‖u − Puh‖Xs [4]. This, a triangle inequality, and Theorem 6.1 conclude the proof. ⊓⊔

7 Auxiliary results for applications

7.1 General notation

Standard notation of Lebesgue and Sobolev spaces, their norms, and L2 scalar products

applies throughout the paper such as the abbreviation ‖ • ‖ for ‖ • ‖L2(�). For real s,

H s(�) denotes the Sobolev space endowed with the Sobolev-Slobodeckii semi-norm

(resp. norm) | • |H s (�) (resp. ‖ • ‖H s (�) ) [20]; H s(K ):=H s(int(K )) abbreviates the

Sobolev space with respect to the interior int(K ) �= ∅ of a triangle K . The closure of

D(�) in H s(�) is denoted by H s
0 (�) and H−s(�) is the dual of H s

0 (�). The semi-

norm and norm in W s,p(�), 1 ≤ p ≤ ∞, are denoted by | • |W s,p(�) and ‖ • ‖W s,p(�).

The Hilbert space V :=H2
0 (�) is endowed with the energy norm ||| • |||:=| • |H2(�).

The product space H s(�) × H s(�) (resp. L p(�) × L p(�)) is denoted by Hs(�)

(resp. Lp(�)) and V =: V × V . The energy norm in the product space H2(�) is also

denoted by ||| • ||| and is (|||ϕ1|||2 + |||ϕ2|||2)1/2 for all � = (ϕ1, ϕ2) ∈ H2(�). The norm

on Ws,p(�) is denoted by ‖ • ‖Ws,p(�). Given any function v ∈ L2(ω), define the

integral mean
ffl

ω
v dx:=1/|ω|

´

ω
v dx; where |ω| denotes the area of ω. The notation

A � B (resp. A � B) abbreviates A ≤ C B (resp. A ≥ C B) for some positive generic

constant C , which depends exclusively on � and the shape regularity of a triangulation

T ; A ≈ B abbreviates A � B � A.

Triangulation. Let T denote a shape regular triangulation of the polygonal Lipschitz

domain � with boundary ∂� into compact triangles and T(δ) be a set of uniformly

shape-regular triangulations T with maximal mesh-size smaller than or equal to δ > 0.

Given T ∈ T, define the piecewise constant mesh function hT (x) = hK = diam(K )
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for all x ∈ K ∈ T , and set hmax:= maxK∈T hK . The set of all interior ver-

tices (resp. boundary vertices) of the triangulation T is denoted by V(�) (resp.

V(∂�)) and V:=V(�) ∪ V(∂�). Let E(�) (resp. E(∂�)) denote the set of all inte-

rior edges (resp. boundary edges) in T . Define a piecewise constant edge-function

on E :=E(�) ∪ E(∂�) by hE |E = hE = diam(E) for any E ∈ E . For a positive

integer m, define the Hilbert (resp. Banach) space Hm(T ) ≡
∏

K∈T Hm(K ) (resp.

W m,p(T ) ≡
∏

K∈T W m,p(K )). The triple norm ||| • |||:=| • |Hm (�) is the energy norm

and ||| • |||pw:=| • |Hm (T ):=‖Dm
pw • ‖ is its piecewise version with the piecewise partial

derivatives Dm
pw of order m ∈ N. For 1 < s < 2, the piecewise Sobolev space H s(T ) is

the product space
∏

T ∈T H s(T ) defined as {vpw ∈ L2(�) : ∀T ∈ T , vpw|T ∈ H s(T )}
and is equipped with the Euclid norm of those contributions ‖ • ‖H s (T ) for all T ∈ T .

For s = 1 + ν with 0 < ν < 1, the 2D Sobolev-Slobodeckii norm [20] of f ∈ H s(�)

reads ‖ f ‖2
H s (�)

:=‖ f ‖2
H1(�)

+ | f |2Hν (�)
and

| f |H s (�):=

⎛
⎝∑

|β|=1

ˆ

�

ˆ

�

|∂β f (x) − ∂β f (y)|2

|x − y|2+2ν
dx dy

⎞
⎠

1/2

.

The piecewise version of the energy norm in H2(T ) reads |||•|||pw:=|•|H2(T ):=‖D2
pw•

‖ with the piecewise Hessian D2
pw. The curl of a scalar function v is defined by

Curl v =
(
− ∂v/∂ y,−∂v/∂x

)T
and its piecewise version is denoted by Curlpw. The

seminorm (resp. norm) in W m,p(T ) is denoted by | • |W m,p(T ) (resp. ‖ • ‖W m,p(T )).

Define the jump [[ϕ]]E :=ϕ|K+ −ϕ|K− and the average 〈ϕ〉E := 1
2

(
ϕ|K+ + ϕ|K−

)
across

the interior edge E of ϕ ∈ H1(T ) of the adjacent triangles K+ and K−. Extend the

definition of the jump and the average to an edge on boundary by [[ϕ]]E :=ϕ|E and

〈ϕ〉E :=ϕ|E for E ∈ E(∂�). For any vector function, the jump and the average are

understood component-wise. Let �k denote the L2(�) orthogonal projection onto the

piecewise polynomials Pk(T ):=
{
v ∈ L2(�) : ∀ K ∈ T , v|K ∈ Pk(K )

}
of degree at

most k ∈ N0. (The notation ||| • |||pw, �K , and Vh below hides the dependence on

T ∈ T.)

7.2 Finite element function spaces and discrete norms

This section introduces the discrete spaces and norms for the Morley/dG/C0IP/WOPSIP

schemes. The Morley finite element space [15] reads

M(T ):=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vM ∈ P2(T )

∣∣∣∣

vM is continuous at the vertices and its normal

derivatives νE · DpwvM are continuous at

the midpoints of interior edges, vM vanishes

at the vertices of ∂� and νE · DpwvM

vanishes at the midpoints of boundary edges

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.
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The semi-scalar product apw is defined by the piecewise Hessian D2
pw, for all

vpw, wpw ∈ H2(T ) as

apw(vpw, wpw):=
ˆ

�

D2
pwvpw : D2

pwwpw dx. (7.1)

The bilinear form apw(•, •) induces a piecewise H2 seminorm ||| • |||pw = apw(•, •)1/2

that is a norm on V + M(T ) [10]. The piecewise Hilbert space H2(T ) is endowed

with a norm ‖ • ‖h [7] defined by

‖vpw‖2
h :=|||vpw|||2pw + jh(vpw)2 for all vpw ∈ H2(T ),

jh(vpw)2:=
∑

E∈E

∑

z∈V(E)

h−2
E |

[[
vpw

]]
E

(z)|2 +
∑

E∈E

∣∣∣∣
 

E

[[
∂vpw/∂νE

]]
E

ds

∣∣∣∣
2

(7.2)

with the jumps
[[
vpw

]]
E

(z) = vpw|ω(E)(z) for z ∈ V(∂�); the edge-patch

ω(E):= int(K+ ∪ K−) of the interior edge E = ∂K+ ∩ ∂K− ∈ E(�) is the

interior of the union K+ ∪ K− of the neighboring triangles K+ and K−, and[[
∂vpw/∂νE

]]
E

= ∂vpw

∂νE
|E for E ∈ E(∂�) at the boundary with jump partner zero

owing to the homogeneous boundary conditions.

For all vpw, wpw ∈ H2(T ) and parameters σ1, σ2 > 0 (that will be chosen suffi-

ciently large but fixed in applications), define cdG(•, •) and the mesh dependent dG

norm ‖ • ‖dG by

cdG(vpw, wpw):=
∑

E∈E

σ1

h3
E

ˆ

E

[[
vpw

]]
E

[[
wpw

]]
E

ds

+
∑

E∈E

σ2

hE

ˆ

E

[[
∂vpw/∂νE

]]
E

[[
∂wpw/∂νE

]]
E

ds,

‖vpw‖2
dG:=|||vpw|||2pw + cdG(vpw, vpw). (7.3)

The discrete space for the C0IP scheme is S2
0 (T ):=P2(T ) ∩ H1

0 (�). The restriction

of ‖ • ‖dG to H1
0 (�) with a stabilisation parameter σIP > 0 defines the norm for the

C0IP scheme below,

cIP(vpw, wpw):=
∑

E∈E

σIP

hE

ˆ

E

[[
∂vpw/∂νE

]] [[
∂wpw/∂νE

]]
ds,

‖vpw‖2
IP:=|||vpw|||2pw + cIP(vpw, vpw). (7.4)

For all vpw, wpw ∈ H2(T ), the WOPSIP norm ‖ • ‖P is defined by

cP(vpw, wpw):=
∑

E∈E

∑

z∈V(E)

h−4
E

([[
vpw

]]
E

(z)
) ([[

wpw

]]
E

(z)
)
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+
∑

E∈E

h−2
E

 

E

[[
∂vpw/∂νE

]]
ds

 

E

[[
∂wpw/∂νE

]]
ds, (7.5)

‖vpw‖2
P:=|||vpw|||2pw + cP(vpw, vpw). (7.6)

The discrete space for dG/WOPSIP schemes is P2(T ). The discrete norms ||| • |||pw,

‖•‖dG and ‖•‖IP are all equivalent to ‖•‖h on V +Vh for Vh ∈ {M(T ), P2(T ), S2
0 (T )}.

In comparison to jh(•), the jump contribution in ‖•‖P involves smaller negative powers

of the mesh-size and so jh(vpw)2 � cP(vpw, vpw) (with hE ≤ diam(�) � 1); but there

is no equivalence of ‖ • ‖h with ‖ • ‖P in V + P2(T ).

Lemma 7.1 (Equivalence of norms [11, Remark 9.2]) It holds ‖ • ‖h = ||| • |||pw on

V +M(T ), ‖•‖h ≈ ‖•‖dG� ‖ • ‖P on V + P2(T ), and ‖•‖h ≈ ‖•‖IP on V +S2
0 (T ).

7.3 Interpolation and companion operators

The classical Morley interpolation operator IM is generalized from H2
0 (�) to the

piecewise H2 functions by averaging in [11].

Definition 7.2 (Morley interpolation [11, Definition 3.5]) Given any vpw ∈ H2(T ),

define IMvpw:=vM ∈ M(T ) by the degrees of freedom as follows. For any interior

vertex z ∈ V(T ) with the set of attached triangles T (z) of cardinality |T (z)| ∈ N and

for any interior edge E ∈ E(�) with a mean value operator 〈•〉E set

vM(z):=|T (z)|−1
∑

K∈T (z)

(vpw|K )(z) and

 

E

∂vM

∂νE
ds:=

 

E

〈
∂vpw

∂νE

〉
ds.

The remaining degrees of freedom at vertices and edges on the boundary are set zero

owing to the homogeneous boundary conditions.

Lemma 7.3 (interpolation error estimates [11, Lemma 3.2, Theorem 4.3]) Any vpw ∈
H2(T ) and its Morley interpolation IMvpw ∈ M(T ) satisfy

(a)
∑2

m=0 |hm−2
T

(vpw − IMvpw)|Hm(T ) � ‖(1 − �0)D2
pwvpw‖ + jh(vpw)�‖vpw‖h;

(b)
∑2

m=0 |hm−2
T

(vpw− IMvpw)|Hm (T ) ≈ minwM∈M(T ) ‖vpw−wM‖h ≈ minwM∈M(T )∑2
m=0 |hm−2

T
(vpw − wM)|Hm(T );

(c) the integral mean property of the Hessian, D2
pw IM = �0 D2 in V ;

(d) |||v − IMv|||pw � ht−2
max‖v‖H t (�) for all v ∈ H t (�) with 2 ≤ t ≤ 3.

Let HCT (T ) denote the Hsieh-Clough-Tocher finite element space [15, Chapter 6].

Lemma 7.4 (right-inverse [10, 11, 19]) There exists a linear map J : M(T ) →
(HCT (T )+ P8(T ))∩ H2

0 (�) such that any vM ∈ M(T ) and any v2 ∈ P2(T ) satisfy

(a)–(h).

(a) JvM(z)=vM(z) for any z ∈ V;

(b) ∇(JvM)(z) = |T (z)|−1
∑

K∈T (z)(∇vM|K )(z) for z ∈ V(�);
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(c)
ffl

E
∂ JvM/∂νE ds =

ffl

E
∂vM/∂νE ds for any E ∈ E;

(d) vM − JvM ⊥ P2(T ) in L2(�);

(e)
∑2

m=0 ‖hm−2
T

Dm
pw(vM − JvM)‖� minv∈V |||vM − v|||pw;

(f) ‖v2 − J IMv2‖H t (T ) � h2−t
max minv∈V ‖v2 − v‖h holds for 0 ≤ t ≤ 2;

(g)
∑2

m=0 ‖hm−3
T

Dm
pw((1 − IM)v2)‖ +

∑2
m=0 ‖hm−2

T
Dm

pw((1 − J )IMv2)‖ � minv∈V

‖v − v2‖P;

(h) |v2 − J IMv2|W 1,2/(1−t)(T ) � h1−t
max minv∈V ‖v − v2‖h holds for 0 < t < 1.

Proof of (a)-(f). This is included in [10, 19], [11, Lemma 3.7, Theorem 4.5]. ⊓⊔
Proof of (g). The inequality

∑2
m=0 ‖hm−3

T
Dm

pw((1 − IM)v2)‖ � ‖v − v2‖P follows

as in the proof of Lemma 10.2 in [11]. Lemma 7.4.e and a triangle inequality show

2∑

m=0

‖hm−2
T

Dm
pw(1 − J )IMv2‖ � |||IMv2 − v|||pw ≤ |||IMv2 − v2|||pw + |||v2 − v|||pw.

Since |||IMv2 − v2|||pw ≤ hmax|||h−1
T

(IMv2 − v2)|||pw � hmax‖v − v2‖P from the first

part of (g) with m = 2, the above displayed estimate, and ||| • |||pw ≤ ‖ • ‖P conclude

the proof of (g). ⊓⊔
Proof of (h). An inverse estimate [17, Lemma 12.1], [2, Lemma 4.5.3], [15, Theorem

3.2.6] on each triangle T̂ in the HCT subtriangulation T̂ of T in each component of

g:=∇pw(v2 − J IMv2) reads ‖g‖L2/(1−t)(T̂ ) ≤ Cinvh−t

T̂
‖g‖L2(T̂ ). Consequently,

C−1
inv ‖g‖L2/(1−t)(�) ≤

⎛
⎝∑

T̂ ∈T̂

‖h−t

T̂
g‖2/(1−t)

L2(T̂ )

⎞
⎠

(1−t)/2

≤

⎛
⎝∑

T̂ ∈T̂

‖h−t

T̂
g‖2

L2(T̂ )

⎞
⎠

1/2

with ‖ • ‖ℓ2/(1−t) ≤ ‖ • ‖ℓ2 in the sequence space R
N (ℓp is decreasing in p ≥ 1) in

the last step. With the shape regularity hT̂ ≈ hT , this reads

|v2 − J IMv2|W 1,2/(1−t)(T ) � |h−t
T

(v2 − J IMv2)|H1(T ). (7.7)

Since IM(v2 − J IMv2) = 0 by Lemma 7.4, Lemma 7.3.a provides

|h−t
T

(v2 − J IMv2)|H1(T ) ≤ h1−t
max|h

−1
T

(v2 − J IMv2)|H1(T ) � h1−t
max‖v2 − J IMv2‖h .

(7.8)

Since jh(J IMv2) = 0 = jh(v), the definition of jh(•) shows jh(v2 − J IMv2) =
jh(v2 − v). This, the definition of ‖ • ‖h in (7.2), and Lemma 7.4.f imply

‖v2 − J IMv2‖h � ‖v − v2‖h . (7.9)

The combination of (7.7)–(7.9) implies the assertion. ⊓⊔

123



C. Carstensen et al.

Remark 7.5 (orthogonality of J ) Since J is a right-inverse of IM, i.e., IM J = id

in M(T ) [11, (3.9)], the integral mean property of the Hessian from Lemma 7.3.c

reveals apw(v2, (1 − J )vM) = apw(v2, (1 − IM)JvM) = 0 for any v2 ∈ P2(T ) and

vM ∈ M(T ).

Lemma 7.6 (an intermediate bound) For 1 < p < ∞, any (v2, v) ∈ P2(T ) × V

satisfies |v + v2|W 1,p(T ) � ‖v + v2‖h .

Proof The triangle inequality |v + v2|W 1,p(T ) ≤ |v + J IMv2|W 1,p(�) + |v2 −
J IMv2|W 1,p(T ) and the Sobolev embedding H2

0 (�) →֒ W
1,p
0 (�) in 2D lead to

|v+ J IMv2|W 1,p(�) � |||v+ J IMv2|||≤|||v+v2|||pw+|||v2 − J IMv2|||pw � ‖v + v2‖h

with ||| • |||pw ≤ ‖ • ‖h and Lemma 7.4.f in the last step. The inequality |v2 −
J IMv2|W 1,p(T ) ≤ |�|1/p|v2 − J IMv2|W 1,∞(T ) leads to some K ∈ T with |v2 −
J IMv2|W 1,∞(T ) = |v2− J IMv2|W 1,∞(K ). The inverse estimate |v2− J IMv2|W 1,∞(K ) �

h−1
K |v2 − J IMv2|H1(K ) and Lemma 7.4.f reveal |v2 − J IMv2|W 1,∞(T ) � ‖v + v2‖h .

The combination of the above inequalities concludes the proof. ⊓⊔

Lemma 7.7 (quasi-optimal smoother R) Any R ∈ {id, IM, J IM} and V̂ = V + Vh

with

Vh(resp. ‖ • ‖V̂ ):=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

M(T ) for the Morley scheme (resp. ||| • |||pw),

P2(T ) for the dG scheme (resp. ‖ • ‖dG),

S2
0 (T ) for the C0IP scheme (resp. ‖ • ‖IP),

P2(T ) for the WOPSIP scheme (resp. ‖ • ‖P)

satisfy

‖(1 − R)vh‖V̂ ≤ �R‖v − vh‖V̂ for all (vh, v) ∈ Vh × V .

The constant �R exclusively depends on the shape regularity of T .

Proof for R = id. This holds with �R = 0. ⊓⊔
Proof for R = IM. Since ‖(1 − �0)D2

pwvh‖ = 0 for vh ∈ Vh ⊆ P2(T ), Lemma 7.3.a

leads to |||(1− IM)vh |||pw � jh(vh). This, the definition of ‖•‖h , and jh(IMvh) = 0 =
jh(v) show

|||(1 − IM)vh |||pw ≤‖(1− IM)vh‖h � jh(vh) = jh(v − vh)≤‖v − vh‖h � ‖v − vh‖V̂

with Lemma 7.1 in the last step. Theorem 4.1 of [11] provides ‖(1 − IM)vh‖V̂ �

‖(1 − IM)vh‖h for the dG/C0IP norm ‖ • ‖V̂ . The combination proves the assertion

for Morley/dG/C0IP.

For WOPSIP, the definition of ‖ • ‖P in (7.6), |||(1 − IM)vh |||pw � ‖v − vh‖P from

the displayed inequality above, and cP(v, v) = cP(v, vh) = 0 reveal

‖(1 − IM)vh‖P ≤ |||(1 − IM)vh |||pw + cP(vh, vh)1/2 � ‖v − vh‖P. ⊓⊔

123



Unified a priori analysis of four second-order...

Proof for R = J IM. Triangle inequalities and ‖ • ‖V̂ = ||| • |||pw in V show

‖(1 − J IM)vh‖V̂ ≤ ‖v − vh‖V̂ + |||v − J IMvh |||pw ≤ 2‖v − vh‖V̂ + |||(1 − J IM)vh |||pw.

Lemma 7.4.f and Lemma 7.1 conclude the proof for R = J IM. ⊓⊔
The transfer from M(T ) into Vh [11] is modeled by some linear map Ih : M(T ) →

Vh that is bounded in the sense that there exists some constant �h ≥ 0 such that

‖vM − IhvM‖h ≤ �h |||vM − v|||pw holds for all vM ∈ M(T ) and all v ∈ V . A precise

definition of Ih = IC IM concludes this section.

Definition 7.8 (transfer operator [11, (8.4)]) For vM ∈ M(T ), let IC : M(T ) →
S2

0(T ) be defined by

(ICvM)(z) =

⎧
⎨
⎩

vM(z) at z ∈ V,

〈vM〉E (z) at z = mid(E) for E ∈ E(�),

0 at z = mid(E) for E ∈ E(∂�)

followed by Lagrange interpolation in P2(K ) for all K ∈ T .

Remark 7.9 (approximation) A triangle inequality with IMv, Lemma 7.1, and ‖vM −
ICvM‖h � |||v − vM|||pw for any v ∈ V and vM ∈ M(T ) from [11, (5.11)] show

‖v − IC IMv‖h � |||v − IMv|||pw. In particular, given any v ∈ V and given any positive

ǫ > 0, there exists δ > 0 such that for any triangulation T ∈ T(δ) with discrete space

Vh , we have ‖v − vh‖V̂ < ǫ for some vh ∈ Vh . (The proof utilizes the density of

smooth functions in V , the preceding estimates, and Lemma 7.3.)

8 Application to Navier-Stokes equations

This section verifies the hypotheses (H1)–(H4) and (Ĥ1) and establishes (A)-(C) for

the 2D Navier-Stokes equations in the stream function vorticity formulation. Sections

8.1 and 8.2 describe the problem and four quadratic discretizations. The a priori error

control for the Morley/dG/C0IP (resp. WOPSIP) schemes follows in Sects. 8.3–8.6

(resp. Sect. 8.7) .

8.1 Stream function vorticity formulation of Navier-Stokes equations

The stream function vorticity formulation of the incompressible 2D Navier–Stokes

equations in a bounded polygonal Lipschitz domain � ⊂ R
2 seeks u ∈ H2

0 (�) =:
V = X = Y such that

�2u +
∂

∂x

(
(−�u)

∂u

∂ y

)
−

∂

∂ y

(
(−�u)

∂u

∂x

)
= F (8.1)

for a given right-hand side F ∈ V ∗. The biharmonic operator �2 is defined by

�2φ:=φxxxx + φyyyy + 2φxxyy . The analysis of extreme viscosities lies beyond the

scope of this article, and the viscosity in (8.1) is set one.
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For all φ, χ,ψ ∈ V , define the bilinear and trilinear forms a(•, •) and Ŵ(•, •, •)

by

a(φ, χ):=
ˆ

�

D2φ : D2χ dx and Ŵ(φ, χ,ψ):=
ˆ

�

�φ

(
∂χ

∂ y

∂ψ

∂x
−

∂χ

∂x

∂ψ

∂ y

)
dx.

(8.2)

The weak formulation that corresponds to (8.1) seeks u ∈ V such that

a(u, v) + Ŵ(u, u, v) = F(v) for all v ∈ V . (8.3)

8.2 Four quadratic discretizations

This subsection presents four lowest-order discretizations, namely, the Morley/dG/C0IP/

WOPSIP schemes for (8.3). Define the discrete bilinear forms

ah :=apw + bh + ch : (Vh + M(T )) × (Vh + M(T )) → R,

with apw from (7.1) and bh, ch in Table 3 for the four discretizations. Let

Ŵ̂(•, •, •):=Ŵpw(•, •, •) be the piecewise trilinear form defined for all φ, χ,ψ ∈
H2(T ) by

Ŵpw(φ, χ,ψ):=
∑

K∈T

ˆ

K

�φ

(
∂χ

∂ y

∂ψ

∂x
−

∂χ

∂x

∂ψ

∂ y

)
dx. (8.4)

For all the four discretizations of Table 3, recall b̂(•, •):=Ŵpw(u, •, •)+Ŵpw(•, u, •) :
(V +P2(T ))×(V +P2(T )) → R from (3.2). Given R, S ∈ {id, IM, J IM}, the discrete

schemes for (8.3) seek a solution uh ∈ Vh to

Nh(uh; vh):=ah(uh, vh) + Ŵpw(Ruh, Ruh, Svh) − F(J IMvh) = 0 for all vh ∈ Vh .

(8.5)

8.3 Main results

This subsection states the results on the a priori control for the discrete schemes of

Sect. 8.2. Lemma 7.1 shows that ‖•‖V̂ ≈ ‖•‖h for the Morley/dG/C0IP schemes. The

WOPSIP scheme is discussed in Sect. 8.7. Unless stated otherwise, R ∈ {id, IM, J IM}
is arbitrary.

Theorem 8.1 (a priori energy norm error control) Given a regular root u ∈ V =
H2

0 (�) to (8.3) with F ∈ H−2(�) and 0 < t < 1, there exist ǫ, δ > 0 such that, for

any T ∈ T(δ), the unique discrete solution uh ∈ Vh to (8.5) with ‖u − uh‖h ≤ ǫ for

the Morley/dG/C0IP schemes satisfies
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Ŷ
:=

V̂
=

V
+

V
h

V
+

M
(T

)
V

+
P

2
(T

)
V

+
S

2 0
(T

)
V

+
P

2
(T

)

‖
•

‖ V̂
|||

•
||| p

w
‖

•
‖ d

G
‖

•
‖ I

P
‖

•
‖ P

P
=

Q
J

J
I M

J
I M

J
I M

I h
id

id
I C

fr
o

m
D

efi
n

it
io

n
7
.8

id

I X
h

=
I V

h
=

I h
I M

I M
I M

I C
I M

I M

J
(•

,
•)

−
∑ E
∈E

ˆ

E
〈D

2
v

2
ν

E
〉 E

· [[
∇

w
2
]] E

d
s

−

b
h
(•

,
•)

0
−

θ
J

(v
2
,
w

2
)−

J
(w

2
,
v

2
),

−
1

≤
θ

≤
1

0

c
h
(•

,
•)

0
c d

G
fr

o
m

(7
.3

)
c I

P
fr

o
m

(7
.4

)
c P

fr
o

m
(7

.5
)

123



C. Carstensen et al.

‖u − uh‖h � min
vh∈Vh

‖u − vh‖h +
{

0 for S = J IM,

h1−t
max for S = id or IM.

(8.6)

If F ∈ H−r (�) for some r < 2, then (8.6) holds with t = 0.

Remark 8.2 (quasi best-approximation) The best approximation result (1.1) holds for

S = Q = J IM.

A comparison result follows as in [11, Theorem 9.1] and the proof is therefore omitted.

Theorem 8.3 (comparison for R ∈ {id, IM, J IM}and S = Q = J IM) The regular root

u ∈ V to (8.3) and for hmax sufficiently small, the respective local discrete solution

uM, udG, uIP ∈ Vh to (8.5) for the Morley/dG/C0IP schemes with S = J IM satisfy

‖u − uM‖h ≈ ‖u − udG‖h ≈ ‖u − uIP‖h ≈ ‖(1 − �0)D2u‖L2(�).

A summary of the a priori error control in Theorem 8.5 below is

‖u − uh‖H s (T ) � ‖u − uh‖h

(
ha

max + ‖u − uh‖h

)
+ Cbhb

max (8.7)

with a, b, Cb as described in Table 4.

Remark 8.4 (Table 1 vs 4) Note that the parameter t > 0 appears in Table 4 and not in

Table 1. For r = 2, (8.7) solely asserts ‖u − uh‖H s (T ) � ‖u − uh‖2
h � 1 even though

a and b depend on t .

Recall the index of elliptic regularity σreg and σ := min{σreg, 1} > 0 from Section 1.

Theorem 8.5 (a priori error control in weaker Sobolev norms) Given a regular root

u ∈ V to (8.3) with F ∈ H−2(�), 2 − σ ≤ s < 2, and 0 < t < 1, there exist

ǫ, δ > 0 such that, for any T ∈ T(δ), the unique discrete solution uh ∈ Vh to (8.5)

with ‖u − uh‖V̂ ≤ ǫ satisfies (a)–(e).

(a) For the Morley/dG/C0IP schemes with R:=J IM,

‖u − uh‖H s (T ) � ‖u − uh‖h

(
h2−s

max + ‖u − uh‖h

)
+
{

0 for S = J IM,

h3−t−s
max for S = id or IM.

(b) For the Morley/dG/C0IP schemes with R:=IM and (c) for the Morley scheme with

R = id,

‖u − uh‖H s (T ) � ‖u − uh‖h

(
hmin{2−s,1−t}

max + ‖u − uh‖h

)

+
{

0 for S = J IM,

h3−t−s
max for S = id or IM.
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Table 4 Summary of error control in (8.7) from Theorem 8.5

r s R S a b Cb

Morley dG/C0IP Morley/dG/ C0IP

r < 2 2 − σ ≤ s < 2 id, IM, J IM IM, J IM J IM 2 − s − 0

id, IM 3 − s 1

r = 2 1 < s < 2 id, IM, J IM IM, J IM J IM 2 − s − 0

id, IM 4 − 2s 1

s = σ = 1 J IM J IM 1 − 0

id, IM 2 − t 1

id, IM IM J IM 1 − t − 0

id, IM 2 − t 1

(d) For σ < 1, whence 1 < s < 2, for the Morley/dG/C0IP schemes with R ∈
{IM, J IM} and for the Morley scheme with R = id,

‖u − uh‖H s (T ) � ‖u − uh‖h

(
h2−s

max + ‖u − uh‖h

)
+
{

0 for S = J IM,

h4−2s
max for S = id or IM.

(e) If F ∈ H−r (�) for some r < 2, then (a)-(c) hold with t = 0.

Remark 8.6 (constant dependency) The constants hidden in the notation � of The-

orem 8.1 (resp. 8.5) exclusively depend on the exact solution u (resp. u and z) to

(8.3) (resp. (8.3) and (6.1)), shape regularity of T , t (resp. s, t), and on respective

stabilisation parameters σ1, σ2, σIP ≈ 1.

Remark 8.7 (scaling for WOPSIP) The semi-scalar product ch(•, •) in the WOPSIP

scheme is an analog to the one in jh from (7.2) with different powers of the mesh-size.

It is a consequence of the different scaling of the norms that (H1) and (Ĥ1) do not

hold for the WOPSIP scheme.

8.4 Preliminaries

This section investigates the piecewise trilinear form Ŵpw(•, •, •) from (8.4) and its

boundedness with a global parameter 0 < t < 1 that may be small. Recall the energy

norm ||| • |||, and the discrete norms ||| • |||pw, ‖ • ‖h , and ‖ • ‖P from Sect. 7.2. The

constants hidden in the notation � in Lemma 8.8 below exclusively depend on the

shape regularity of T and on t .

Lemma 8.8 (boundedness of the trilinear form) Any ψ ∈ V and any φ̂, χ̂ , ψ̂ ∈ V +
P2(T ), satisfy

(a)Ŵpw(φ̂, χ̂ , ψ̂) � |||φ̂|||pw‖χ̂‖h‖ψ̂‖h and

(b)Ŵpw(φ̂, χ̂ , ψ) � |||φ̂|||pw‖χ̂‖h‖ψ‖H1+t (�).
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Proof A general Hölder inequality reveals

Ŵpw(φ̂, χ̂ , ψ̂) ≤
√

2|||φ̂|||pw|χ̂ |W 1,2/t (T )|ψ̂ |W 1,2/(1−t)(T ) (8.8)

(owing to t/2 + (1 − t)/2 = 1/2 and |�pwφ̂| ≤
√

2|D2
pwφ̂| a.e.). Lemma 7.6

provides |χ̂ |W 1,2/t (T ) � ‖χ̂‖h and |ψ̂ |W 1,2/(1−t)(T ) � ‖ψ̂‖h . The combination with

(8.8) concludes the proof of (a). For ψ ∈ V (replacing ψ̂), the Sobolev embedding

H t (�) →֒ L2/(1−t)(�) [4, Corollary 9.15] provides

|ψ |W 1,2/(1−t)(T ) = |ψ |W 1,2/(1−t)(�) � ‖ψ‖H1+t (�).

The combination with (8.8) concludes the proof of (b). ⊓⊔

Lemma 8.9 (approximation properties) For all t > 0, there exists a constant C(t) > 0

such that any φ, χ ∈ V ∩H2+t (�), φ̂, χ̂ ∈ V +P2(T ), and (v, v2, vM) ∈ V ×P2(T )×
M(T ) satisfy

(a) Ŵpw(φ̂, χ̂ , (1 − J IM)v2) ≤ C(t)h1−t
max|||φ̂|||pw‖χ̂‖h‖v − v2‖h,

(b) Ŵpw(φ̂, χ, (1 − J IM)v2) ≤ C(t)hmax|||φ̂|||pw‖χ‖H2+t (�)‖v − v2‖h,

(c) Ŵpw((1 − J )vM, φ̂, χ̂) ≤ C(t)h1−t
max|||v − vM|||pw‖φ̂‖h‖χ̂‖h .

(d) Ŵpw((1 − J )vM, φ, χ) ≤ C(t)hmax|||v − vM|||pw‖φ‖H2+t (�)‖χ‖H2+t (�).

Proof of (a). Lemma 7.6 and 7.4.h establish |χ̂ |W 1,2/t (T ) � ‖χ̂‖h and |(1 −
J IM)v2|W 1,2/(1−t)(T ) � h1−t

max‖v − v2‖h . The combination with (8.8) concludes the

proof of (a). ⊓⊔
Proof of (b). A generalised Hölder inequality and the embedding H2+t (�) →֒
W 1,∞(�) [4, Corollary 9.15] provide

Ŵpw(φ̂, χ, (1 − J IM)v2) ≤
√

2|||φ̂|||pw|χ |W 1,∞(T )|(1 − J IM)v2|H1(T )

� |||φ̂|||pw‖χ‖H2+t (T )|(1 − J IM)v2|H1(T ).

Lemma 7.4.f controls the last factor and concludes the proof of (b). ⊓⊔
Proof of (c). Lemma 7.3.c implies

´

�
�pw(vM − JvM)�0 Dpwφ̂ ·�0Curlpwχ̂ dx = 0

and so

Ŵpw((1 − J )vM, φ̂, χ̂) =
ˆ

�

�pw((1 − J )vM)((1 − �0)Dpwφ̂) · Curlpwχ̂ dx

+
ˆ

�

�pw((1 − J )vM)�0 Dpwφ̂ · ((1 − �0)Curlpwχ̂ ) dx.

(8.9)

A generalised Hölder inequality shows

ˆ

�

�pw((1 − J )vM)((1 − �0)Dpwφ̂) · Curlpwχ̂ dx
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≤ ‖hT �pw(1 − J )vM‖L2/(1−t)(�)‖h−1
T

(1 − �0)Dpwφ̂‖L2(�)|χ̂ |W 1,2/t (T ).

(8.10)

Abbreviate aT :=h2−t
T ‖�(vM − JvM)‖L∞(T ) for a triangle T ∈ T with area |T | ≤

h2
T to establish

‖hT �pw(1 − J )vM‖L2/(1−t)(�) ≤
( ∑

T ∈T

a
2/(1−t)

T

)(1−t)/2 ≤
( ∑

T ∈T

a2
T

)1/2

with the monotone decreasing ℓp norm for 2 ≤ 2/(1 − t) in the last step. An inverse

estimate (with respect to the HCT refinement T̂ of T ) as in the proof of Lemma 7.4.h

provides ‖�((1− J )vM)‖L∞(T ) ≤
√

2‖vM − JvM‖W 2,∞(�) � h−1
T ‖vM − JvM‖H2(T ).

Hence aT � h1−t
T ‖vM − JvM‖H2(T ) and

‖hT �pw(1 − J )vM‖L2/(1−t)(�) � |||h1−t
T

(vM − JvM)|||pw ≤ h1−t
max|||vM − JvM|||pw.

A piecewise Poincaré inequality with Payne-Weinberger constant hT /π [24] reads

π‖h−1
T

(1 − �0)Dpwφ̂‖L2(�) ≤ |||φ̂|||pw.

Recall |χ̂ |W 1,2/t (T ) � ‖χ̂‖h from the proof of (a). The combination of the previous

estimates of the three terms in (8.10) proves the asserted estimate for the first integral

in the right-hand side of (8.9). The analysis for the second term is rather analogue

(interchange the role of φ̂ and χ̂ ). Notice that (c) follows even in the form Ŵpw((1 −
J )vM, φ̂, χ̂) ≤ C(t)h1−t

max|||v − vM|||pw(|||φ̂|||pw‖χ̂‖h + ‖φ̂‖h |||χ̂ |||pw). ⊓⊔

Proof of (d). Substitute φ ≡ φ̂, χ ≡ χ̂ in (8.9) (with φ, χ ∈ V ∩ H2+t (�)) and

employ a different generalised Hölder inequality for the first term to infer

ˆ

�

�pw((1 − J )vM)((1 − �0)Dφ) · Curlχ dx

≤ ‖�pw(1 − J )vM‖L2(�)‖(1 − �0)Dφ‖L2(�)|χ |W 1,∞(�).

The remaining arguments of the proof of (c) simplify to ‖�pw(1 − J )vM‖L2(�) ≤√
2|||(1− J )vM|||pw, π‖(1−�0)Dφ‖L2(�) ≤ hmax|||φ|||, and |χ |W 1,∞(�) � ‖χ‖H2+t (�)

(by embedding H2+t (�) →֒ W 1,∞(�) for t > 0). The resulting estimate

ˆ

�

�pw((1 − J )vM)((1 − �0)Dφ) · Curlχ dx � hmax|||(1 − J )vM|||pw|||φ|||‖χ‖H2+t (�)

and Lemma 7.4.e lead to the assertion for one term in the right-hand side of (8.9).

The analysis of the other term is analog. Notice that (d) follows even in the form

Ŵpw((1 − J )vM, φ, χ) ≤ C(t)hmax|||v − vM|||pw(|||φ|||‖χ‖H2+t (�) + ‖φ‖H2+t (�)|||χ |||).
⊓⊔
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8.5 Proof of Theorem 8.1

The conditions in Theorem 5.1 are verified to establish the energy norm estimates.

The hypotheses (2.3)–(2.6) follow from Lemma 7.7. Hypothesis (H1) is verified for

Morley/dG/C0IP in the norm ‖ • ‖h in [11, Lemma 6.6] and this norm is equivalent

to ||| • |||pw,‖ • ‖dG, and ‖ • ‖IP by Lemma 7.1.

Recall a(•, •) and Ŵ(•, •, •) from (8.2), Ŵ̂(•, •, •) ≡ Ŵpw(•, •, •) from (8.4),

and b̂(•, •) from (3.2) for the regular root u ∈ H2
0 (�). For θh ∈ Vh with ‖θh‖h =

1, Lemma 8.8.b, and ||| • |||pw ≤ ‖ • ‖h provide b̂(Rθh, •) ∈ H−1−t (�) for R ∈
{id, IM, J IM}. There exists a unique ξ ≡ ξ(θh) ∈ V ∩ H3−t (�) such that a(ξ, φ) =
b̂(Rθh, φ) for all φ ∈ V and ‖ξ‖H3−t (�) � ‖b̂(Rθh, •)‖H−1−t (�) � 1. The last

inequality follows from Lemma 8.8.b and the boundedness of R ∈ {id, IM, J IM} from

Lemma 7.7. Since Ih = id (resp. Ih = IC) for Morley/dG (resp. C0IP), Lemma 7.1

(resp. Remark 7.9) and Lemma 7.3.d establish (H2) with δ2 = sup{‖ξ − Ih IMξ‖h :
θh ∈ Vh, ‖θh‖h = 1} � h1−t

max.

Since δ3 = 0 for Q = S = J IM it remains S = id and S = IM in the sequel to

establish (H3). Given θh and yh in Vh = Xh = Yh of norm one, define v2:=Syh ∈
P2(T ) and observe Qyh = J IM yh = J IMv2 (by S = id, IM). Hence with the

definition of b̂(•, •) from (3.2), Lemma 8.9.a shows

|̂b(Rθh, (S − Q)yh)| = |̂b(Rθh, v2 − J IMv2)| ≤ 2C(t)h1−t
max|||u|||‖Rθh‖h‖v2‖h .

(8.11)

The boundedness of R and IM and the equivalence of norms show ‖Rθh‖h‖v2‖h � 1

and so δ3 � h1−t
max.

Consequently, for the three schemes under question and for a sufficiently small

mesh-size hmax, (2.9) holds with βh ≥ β0 � 1.

For u ∈ H2
0 (�) and ǫ > 0, Remark 7.9 establishes (H4) with δ4 < ǫ for all the

three schemes. The existence and uniqueness of a discrete solution uh then follows

from Theorem 4.1.

For the Morley/dG/C0IP schemes with F ∈ H−2(�), Lemma 8.9.a with v = 0 for

S = id resp. S = IM, ‖ • ‖h ≈ ‖ • ‖Vh
on Vh , and the boundedness of IM show

‖Ŵ̂(u, u, (S − Q)•)‖V ∗
h

�

{
0 for S = Q = J IM,

h1−t
max for S = id or IM.

The energy norm error control then follows from Theorem 5.1.

For F ∈ H−r (�) with r < 2, the energy norm error estimate (8.6) with t = 0

can be established by replacing Lemma 8.9.a in the above analysis for r = 2 by

Lemma 8.9.b. ⊓⊔

8.6 Proof of Theorem 8.5

This subsection establishes the a priori control in weaker Sobolev norms for the

Morley/dG/C0IP schemes of Sect. 8.2. Given 2 − σ ≤ s ≤ 2, and G ∈ H−s(�) with
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‖G‖H−s (�) = 1, the solution z to the dual problem (6.1) belongs to V ∩ H4−s(�) by

elliptic regularity. This and Lemma 7.3.d provide

|||z − IMz|||pw � h2−s
max‖z‖H4−s (�) � h2−s

max‖G‖H−s (�) = h2−s
max. (8.12)

The assumptions in Theorem 6.2 with Xs :=H s(T ) and zh :=Ih IMz are verified to

establish Theorem 8.5.a-e. The control of the linear terms in Theorem 6.2 is identical

for the parts (a)-(e) and this is discussed first. The proof starts with a triangle inequality

‖u − uh‖H s (T ) ≤ ‖u − Puh‖H s (T ) + ‖Puh − uh‖H s (T ) (8.13)

in the norm H s(T ) =
∏

T ∈T H s(T ). The Sobolev-Slobodeckii semi-norm over �

involves double integrals over � × � and so is larger than or equal to the sum of the

contributions over T ×T for all the triangles T ∈ T , i.e.,
∑

T ∈T | • |2H s (T )
≤ |• |2H s (�)

for any 1 < s < 2. The definition of ‖ • ‖H s (T ) for 1 < s < 2, Lemma 7.4.f with

t = 1 and P = J IM establish

‖Puh − uh‖H s (T ) ≤ ‖Puh − uh‖H1(T ) + |∇pw(Puh − uh)|H s−1(T )

� hmax‖u − uh‖h + |∇pw(Puh − uh)|H s−1(T ). (8.14)

The formal equivalence of the Sobolev-Slobodeckii norm and the norm by interpo-

lation of Sobolev spaces provides for g:=∇pw(Puh − uh), θ :=s − 1 and K ∈ T

that

|g|H θ (K ) ≤ C(K , θ)‖g‖1−θ

L2(K )
|g|θ

H1(K )
. (8.15)

The point is that a scaling argument reveals C(K , θ) = C(θ) ≈ 1 is independent of

K ∈ T [10]. The Young’s inequality
(
ab ≤ a p/p + bq/q for a, b ≥ 0, 1/p + 1/q =

1
)

leads (for a = h
2θ(θ−1)
K ‖g‖2(1−θ)

L2(K )
, b = h

2θ(1−θ)
K |g|2θ

H1(K )
, p = 1/(1 − θ), and

q = 1/θ ) to

∑

K∈T

‖g‖2(1−θ)

L2(K )
|g|2θ

H1(K )
=

∑

K∈T

h
2θ(θ−1)
K ‖g‖2(1−θ)

L2(K )
h

2θ(1−θ)
K |g|2θ

H1(K )

≤ ‖h−θ
T

g‖2
L2(�)

+ |h1−θ
T

g|2
H1(T )

. (8.16)

Since P = J IM and g = ∇pw(Puh − uh), the estimates (7.8)–(7.9) with t = θ show

‖h−θ
T

g‖2
L2(�)

� h1−θ
max‖u − uh‖h . This and Lemma 7.4.f for t = 2 provide

‖h−θ
T

g‖2
L2(�)

+ |h1−θ
T

g|2
H1(T )

� h1−θ
max‖u − uh‖h . (8.17)

The combination of (8.15)–(8.17) reveals |∇pw(Puh −uh)|H s−1(T ) � h2−s
max‖u −uh‖h

and, with (8.14),

‖Puh − uh‖H s (T ) � h2−s
max‖u − uh‖h . (8.18)
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This leads to the assertion for one term on the right-hand side of (8.13). To estimate

the second term, ‖u − Puh‖H s (T ) = G(u − Puh), we verify the assumptions in

Theorem 6.1. The hypothesis (Ĥ1) for the Morley/dG/C0IP schemes is derived in [11,

Lemma 6.6] for an equivalent norm (by Lemma 7.1) and Lemma 7.7 for R = J IM.

The conditions (2.3)–(2.6) also follow from Lemma 7.7 as stated in the proof of

Theorem 8.1. Hence, Theorem 6.1 applies and provides

‖u − Puh‖H s (T ) = G(u − Puh) � ‖u − uh‖h(‖z − zh‖h

+ ‖u − uh‖h) + Ŵpw(u, u, (S − Q)zh)

+ Ŵpw(Ruh, Ruh, Qzh) − Ŵ(Puh, Puh, Qzh). (8.19)

Since ‖ • ‖dG ≈ ||| • |||pw in V + M(T ) (by Lemma 7.1), (8.12) establishes

‖z − zh‖h � h2−s
max (8.20)

for the Morley/dG schemes with Ih = id. Remark 7.9 and (8.12) establish (8.20) for

the C0IP scheme. The combination of (8.19)–(8.20) reads

‖u − Puh‖H s (T ) � ‖u − uh‖h(h2−s
max + ‖u − uh‖h) + Ŵpw(u, u, (S − Q)zh)

+ Ŵpw(Ruh, Ruh, Qzh) − Ŵ(Puh, Puh, Qzh). (8.21)

The combination of (8.13), (8.18), and (8.21) verifies, for each of the Morley/dG/C0IP

schemes, that

‖u − uh‖H s (T ) � ‖u − uh‖h(h2−s
max + ‖u − uh‖h) + Ŵpw(u, u, (S − Q)zh)

+ Ŵpw(Ruh, Ruh, Qzh) − Ŵ(Puh, Puh, Qzh). (8.22)

Proof of Theorem 8.5.a. The difference Ŵpw(Ruh, Ruh, Qzh) − Ŵ(Puh, Puh, Qzh)

vanishes for P = R = J IM in each of the three schemes. The terms Ŵpw(u, u, (S −
Q)zh) in (8.22) are estimated below for S ∈ {id, IM, J IM} and F ∈ H−2(�). Note

that Qzh :=J zh = J IMzh holds for the Morley scheme. For S = id and each of the

three discretizations, Lemma 8.9.a with v2 = zh provides

Ŵpw(u, u, (1 − J IM)zh) � h1−t
max|||u|||2‖z − zh‖h � h3−t−s

max

with (8.20) in the last step. For S = IM, Lemma 8.9.a with v2 = IMzh and ‖ • ‖V̂ ≈
‖ • ‖h reveal

Ŵpw(u, u, (1 − J )IMzh) � h1−t
max|||u|||2‖z − IMzh‖h .

A triangle inequality and Lemma 7.7 for R = IM provide ‖z − IMzh‖h ≤ (1 +
�R)‖z−zh‖h � h2−s

max with (8.20) in the last step. Altogether, we obtain Ŵpw(u, u, (1−
J )IMzh) � h3−t−s

max . The aforementioned estimates and (8.22) conclude the proof. ⊓⊔
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Proof of Theorem 8.5.b. All the terms except the last two in (8.22) are already estimated

in the proof of (a). For P = Q = J IM and R = IM, elementary algebra reveals

Ŵpw(Ruh, Ruh, Qzh) − Ŵ(Puh, Puh, Qzh)

= Ŵpw((R − P)uh, Ruh, Qzh) + Ŵpw(Puh, (R − P)uh, Qzh)

= Ŵpw((1 − J )IMuh, IMuh, J IMzh) + Ŵpw(J IMuh, (1 − J )IMuh, J IMzh).

(8.23)

The bound ||| • |||pw ≤ ‖ • ‖h , a triangle inequality, and Lemma 7.7 for R = IM result

in

|||u − IMuh |||pw ≤ ‖u − uh‖h + ‖uh − IMuh‖h ≤ (1 + �R)‖u − uh‖h (8.24)

as in Remark 2.8. This and Lemma 7.4.e prove

|||(1 − J )IMuh |||pw � |||u − IMuh |||pw � ‖u − uh‖h . (8.25)

A triangle inequality and (8.24)–(8.25) imply

|||u − J IMuh |||pw ≤ |||u − IMuh |||pw + |||(1 − J )IMuh |||pw � ‖u − uh‖h . (8.26)

As in Remark 2.8, analogous arguments plus (8.20) provide

|||z − IMzh |||pw ≤ (1 + �R)‖z − zh‖h and |||z − J IMzh |||pw � ‖z − zh‖h � h2−s
max.

(8.27)

Lemma 8.9.c and the equivalence ‖ • ‖h ≈ ||| • |||pw in V + M(T ) (by Lemma 7.1)

control the first term on the right-hand side of (8.23), namely

Ŵpw((1 − J )IMuh, IMuh, J IMzh) � h1−t
max|||u − IMuh |||pw|||IMuh |||pw|||J IMzh |||.

The first factor is bounded in (8.24). Since the dual solution z ∈ V ∩ H4−s(�) is

bounded in V = H2
0 (�) (even in H4−s(�)), (8.27) reveals |||J IMzh ||| � 1. Since

|||IMuh |||pw � 1 as well, we infer

Ŵpw((1 − J )IMuh, IMuh, J IMzh) � h1−t
max‖u − uh‖h . (8.28)

The anti-symmetry of Ŵpw(•, •, •) with respect to the second and third variables allows

the application of Lemma 8.9.a to the second term on the right-hand side of (8.23),

namely

Ŵpw(J IMuh, (1 − J )IMuh, J IMzh) � h1−t
max|||J IMuh ||||||u − IMuh |||pw|||J IMzh |||

� h1−t
max‖u − uh‖h .
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The last step employed (8.24) and the boundedness |||J IMuh |||+|||J IMzh ||| � 1 as well.

The combination of the previously displayed estimate with (8.28) and (8.23) leads to

Ŵpw(IMuh, IMuh, J IMzh) − Ŵ(J IMuh, J IMuh, J IMzh)�h1−t
max‖u − uh‖h . (8.29)

The estimates of Ŵpw(u, u, (S − Q)zh) from the above proof of Theorem 8.5.a, (8.29),

and (8.22) conclude the proof.

Proof of Theorem 8.5.c. Since uh = uM = IMuM, and P = Q = J , for the Mor-

ley FEM, the difference Ŵpw(uM, uM, J IMzh) − Ŵ(JuM, JuM, J IMzh) is controlled

by (8.29). This, (8.22), and the estimates from the above proof of Theorem 8.5.a

conclude the proof. ⊓⊔

Proof of Theorem 8.5.d. The choice t :=s −1 > 0 in the estimates in (a)-(c) concludes

the proof. ⊓⊔

Proof of Theorem 8.5.e. For F ∈ H−r (�) with r < 2, the lower-order error estimates

can be established with t = 0 by the substitution of the respective assertions of

Lemma 8.9.a,c by Lemma 8.9.b,d. ⊓⊔

Remark 8.10 (weaker Sobolev norm estimates with R = id) For the dG/C0IP schemes,

(8.23) involves in particular Ŵpw((1 − J IM)uh, uh, J IMzh) and improved estimates

are unknown.

8.7 WOPSIP scheme

Recall ah(•, •) = apw(•, •) + ch(•, •), P = Q = J IM and ch(•, •) from Table 3,

apw(•, •) from (7.1), and let uh ≡ uP in this subsection. The norm ‖ • ‖P from (7.6)

for the WOPSIP scheme is not equivalent to ‖ • ‖h from (7.2) and hence (H1) and

(Ĥ1) do not follow. This does not prevent rather analog a priori error estimates.

Theorem 8.11 (a priori WOPSIP) Given a regular root u ∈ V to (8.3) with F ∈
H−2(�), 2 − σ ≤ s < 2, and 0 < t < 1, there exist ǫ, δ > 0 such that, for any

T ∈ T(δ), the unique discrete solution uh ∈ Vh to (8.5) with ‖u − uh‖P ≤ ǫ for the

WOPSIP scheme satisfies (a)–(e).

(a)‖u − uh‖P � |||u − IMu|||pw + |||hT IMu|||pw

+
{

0 for S = J IM,

h1−t
max for S = id or IM.

Moreover, if u ∈ V ∩ H4−r (�) with F ∈ H−r (�) for 2 − σ ≤ r , s ≤ 2, then

(b)‖u − uh‖H s (T ) � ‖u − uh‖P(h2−s
max + ‖u − uh‖P)

+
{

0 with S = J IM,

h3−t−s
max for S = id or IM

for R:=J IM.

(c)‖u − uh‖H s (T ) � ‖u − uh‖P(hmin{2−s,1−t}
max + ‖u − uh‖P)
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+
{

0 for S = J IM,

h3−t−s
max for S = id or IM

for R:=IM.

(d) For σ < 1, whence 1 < s < 2, and the WOPSIP scheme with R ∈ {IM, J IM},

‖u − uh‖H s (T ) � ‖u − uh‖P

(
h2−s

max + ‖u − uh‖P

)
+
{

0 for S = J IM,

h4−2s
max for S = id or IM.

(e) If F ∈ H−r (�) for some r < 2, then (a)-(c) hold with t = 0.

The subsequent lemma extends (H1) in the analysis of the WOPSIP scheme.

Lemma 8.12 (variant of (H1)) There exists a constant �W > 0 such that any v ∈ V

and v2 ∈ P2(T ) satisfy

ah(IMv, v2) − a(v, Qv2)≤�W

(
|||(1 − IM)v|||pw+|||hT IMv|||pw

)
‖v2‖P.

Proof Note that ch(IMv, v2) = 0 for v ∈ V and v2 ∈ P2(T ) from Table 3 and the

definition of M(T ). Utilize this in ah(•, •) = apw(•, •) + ch(•, •) to infer

ah(IMv, v2) − a(v, Qv2) = apw((IM − 1)v, v2) + apw(v, (1 − Q)v2). (8.30)

Lemma 7.3.c implies

apw((1 − IM)v, v2) = 0.

Since apw((1 − IM)v, (1 − IM)v2) = 0 = apw(IMv, (1 − J )IMv2) from Lemma 7.3.c

and Remark 7.5,

apw(v, (1 − Q)v2) = apw(v, (1 − IM)v2) + apw(v, (1 − J )IMv2)

= apw(IMv, (1 − IM)v2) + apw((1 − IM)v, (1 − J )IMv2)

≤ |||hT IMv|||pw|||h−1
T

(1 − IM)v2|||pw + |||(1 − IM)v|||pw|||(1 − J )IMv2|||pw.

Since Lemma 7.4.g provides |||h−1
T

(1 − IM)v2|||pw + |||(1 − J )IMv2|||pw � ‖v2‖P, this

proves

apw(v, (1 − Q)v2) � (|||hT IMv|||pw + |||(1 − IM)v|||pw)‖v2‖P. (8.31)

The combination of (8.30)–(8.31) concludes the proof. ⊓⊔

Proof of (H2)-(H4) for the WOPSIP scheme. For a regular root u ∈ V to (8.3) and

any θh ∈ P2(T ) with ‖θh‖P = 1, Lemma 8.8.b, ||| • |||pw ≤ ‖•‖P, and Lemma 7.1 lead

to b̂(Rθh, •) ∈ H−1−t (�) for R ∈ {id, IM, J IM}. Therefore, there exists a unique

ξ ≡ ξ(θh) ∈ V ∩ H3−t (�) with ‖ξ‖H3−t (�) � 1 such that a(ξ, φ) = b̂(Rθh, φ) for

all φ ∈ V . Since Ih = id and ‖ • ‖P = ||| • |||pw in V + M(T ) from (7.6), Lemma 7.3.d

leads to (H2) with δ2 = sup{‖ξ − Ih IMξ‖P : θh ∈ P2(T ), ‖θh‖P = 1} � h1−t
max.
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The proof of (H3) starts as in (8.11) and concludes δ3 � h1−t
max from ‖ • ‖h � ‖ • ‖P

by Lemma 7.1.

The hypothesis (H4) with δ4 = ‖u − xh‖P < ǫ follows from Remark 7.9. ⊓⊔

Proof of discrete inf-sup condition. The proof of β0 � 1 in (2.9) follows also for the

WOPSIP scheme the above lines until (2.17) with ξ :=A−1(̂b(Rxh, •)|Y ) ∈ X . Recall

that (2.2) leads to xh +ξh ∈ P2(T ) and then to some φh ∈ P2(T ) with ‖φh‖P = 1 and

αh‖xh + ξh‖P = ah(xh + ξh, φh); this time ǫ = 0 can be neglected. An alternative

split reads

αh‖xh + ξh‖P = ah(xh, φh) + ah(ξh, φh) − a(ξ, Qφh) + a(ξ, Qφh). (8.32)

Lemma 8.12, ξh = IMξ , and |||(1 − IM)ξ |||pw � δ2� h1−t
max from (H2) provide

ah(ξh, φh) − a(ξ, Qφh) � δ2 + |||hT IMξ |||pw. (8.33)

The arguments in (2.20) lead to a(ξ, Qφh) ≤ b̂(Rxh, Sφh) + δ3. The combination of

this with (8.32)–(8.33) provides

‖xh + ξh‖P � ah(xh, φh) + b̂(Rxh, Sφh) + δ2 + δ3 + |||hT IMξ |||pw. (8.34)

Replace (2.21) by (8.34) and apply the arguments thereafter to establish the stability

condition (2.9) with β0:=αh β̂ − (�W + αh)δ2 − δ3 − �W|||hT IMξ |||pw for some

�W � 1. ⊓⊔

Proof of existence and uniqueness of the discrete solution. The analysis follows the proof

of Theorem 4.1 verbatim until (4.6). Instead of (H1), Lemma 8.12 and xh = IMu

in (H4) control the first two terms on the right-hand side of (4.6), namely

ah(xh, yh) − a(u, Qyh) ≤ �W(δ4 + |||hT IMu|||pw).

The remaining steps follow those of the proof of Theorem 4.1 with (4.1) replaced by

ǫ0:=β−1
1

(
(�W + (1 + �R)(‖R‖‖S‖|||IMu|||pw + ‖Q‖‖u‖X )‖Ŵ̂‖)δ4

+ �W|||hT IMu|||pw + |||IMu|||pwδ3/2
)
.

⊓⊔

Proof of Theorem 8.11.a. Recall from Lemma 5.2 that u∗ ∈ X and G(•) = a(u∗, •) ∈
Y ∗, u∗

h ∈ Xh and ah(u∗
h, •) = G(Q•) ∈ Y ∗

h . In the proof of Lemma 5.2, set xh :=IMu∗

so that Lemma 8.12 implies

α0‖eh‖P ≤ ah(xh, yh) − a(u∗, Qyh) ≤ �W(|||u∗ − IMu∗|||pw

+ |||hT IMu∗|||pw).
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Therefore, u∗ and u∗
h in Lemma 5.2 satisfy ‖u∗ − u∗

h‖P ≤ C ′
qo|||u∗ − IMu∗|||pw + α−1

0

�W|||hT IMu∗|||pw for C ′
qo = 1 + α−1

0 �W.

The hypotheses (2.3)–(2.6) follow from Lemma 7.7; (H2)-(H4) are already verified.

The error estimate in Lemma 5.2 applies to Theorem 5.1 with xh = IMu and ‖ • ‖P =
||| • |||pw in V + M(T ) and establishes

‖u − uh‖P � |||u − IMu|||pw + |||hT IMu|||pw + ‖Ŵ̂(u, u, (S − Q)•)‖Y ∗
h

For u ∈ V , the last displayed estimate, Lemma 8.9.a with v = 0 for S = id (resp.

with v2 ∈ M(T ) for S = IM), Lemma 7.1, and the boundedness of IM conclude the

proof. ⊓⊔

Proof of Theorem 8.11.b. A triangle inequality leads to

‖u − uh‖H s (T ) ≤ ‖u − Puh‖H s (T ) + ‖Puh − uh‖H s (T )

= G(u − Puh) + ‖Puh − uh‖H s (T ) (8.35)

with G(u−Puh) = ‖u−Puh‖H s (T )owing to a corollary of the Hahn-Banach theorem

as in the proof of Theorem 6.2 in the last step. Since z ∈ Y solves (6.1), elementary

algebra with (3.3)–(3.5) and zh :=IMz ∈ Yh lead to an alternative identity in place of

(6.3), namely

G(u − Puh) = (a + b)(u − Puh, z) = a(u, z − Qzh) + apw(uh − Puh, z)

+ b(u − Puh, z − Qzh) + b(u − Puh, Qzh)

+ Ŵpw(Ruh, Ruh, Szh) − Ŵ(u, u, Qzh) (8.36)

with ah(uh, zh) = apw(uh, z) from Lemma 7.3.c in the last step. Since apw(IMu, z −
Qzh) = 0 from Lemma 7.3.c and Remark 7.5,

a(u, z − Qzh) = apw(u − IMu, z − Qzh) ≤ (1 + �Q)|||u − IMu|||pw|||z − zh |||pw

with boundedness of apw(•, •) and (2.11) in the last step. A triangle inequality shows

that

|||u − IMu|||pw ≤ |||u − uh |||pw + |||uh − IMuh |||pw + |||IM(u − uh)|||pw � ‖u − uh‖P

(8.37)

with ||| • |||pw ≤ ‖ • ‖P, ‖(1 − IM)uh‖P ≤ �R‖u − uh‖P from Lemma 7.7, and

|||IM(u − uh)|||pw ≤ |||u − uh |||pw in the last step. Arguments analogous to (8.31) and

Lemma 7.4.g with v = u lead to

apw(uh − Puh, z) � (|||hT IMz|||pw + |||(1 − IM)z|||pw)‖u − uh‖P. (8.38)

The combination of (8.36)–(8.38) and the estimates for the remaining terms in the

right-hand side of (8.36) from the last part (after (6.4)) of the proof of Theorem 6.1
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result in

G(u − Puh) � ‖u − uh‖P(|||z − zh |||pw + |||hT zh |||pw

+ ‖u − uh‖P) + Ŵpw(u, u, (S − Q)zh)

+ Ŵpw(Ruh, Ruh, Qzh) − Ŵ(Puh, Puh, Qzh). (8.39)

Since zh = IMz, Lemma 7.3.d provides |||z − zh |||pw � h2−s
max and |||hT zh |||pw � hmax.

Lemma 7.4.f and ‖ • ‖h � ‖ • ‖P (by Lemma 7.1) establish ‖Puh − uh‖H s (T ) �

h2−s
max‖u − uP‖P. The combination of those estimates with (8.35) and (8.39) reveals

‖u − uh‖H s (T ) � ‖u − uh‖P(h2−s
max + ‖u − uh‖P) + Ŵpw(u, u, (S − Q)zh)

+ Ŵpw(Ruh, Ruh, Qzh) − Ŵ(Puh, Puh, Qzh).

The last three terms in the above inequality can be estimated as in the proof of Theo-

rem 8.5.a with ‖ • ‖h � ‖ • ‖P (by Lemma 7.1) and this concludes the proof. ⊓⊔

Proof of Theorem 8.11.c. The arguments in (b) and Theorem 8.5.b establish (c). ⊓⊔

Proof of Theorem 8.11.d. The choice t :=s − 1 in (b)-(c) concludes the proof. ⊓⊔

Proof of Theorem 8.11.e. For F ∈ H−r (�) with r < 2, the a priori error estimates

can be established with t = 0 by a substitution of the assertions in Lemma 8.9.a,c by

Lemma 8.9.b,d.

9 Application to von Kármán equations

This section verifies (H1)-(H4) and (Ĥ1), and establishes (A)-(C) for the von Kármán

equations. Sects. 9.1 and 9.2 present the problem and four discretizations; the a priori

error control for the Morley/dG/C0IP/WOPSIP schemes follows in Sect. 9.3–9.6.

9.1 Von Kármán equations

The von Kármán equations in a polygonal domain � ⊂ R
2 seek (u, v) ∈ H2

0 (�) ×
H2

0 (�) = V × V =: V such that

�2u = [u, v] + f and �2v = −
1

2
[u, u] in �. (9.1)

The von Kármán bracket [•, •] above is defined by [η, χ ]:=ηxxχyy+ηyyχxx −2ηxyχxy

for all η, χ ∈ V . The weak formulation of (9.1) seeks u, v ∈ V that satisfy for all

(ϕ1, ϕ2) ∈ V

a(u, ϕ1) + γ (u, v, ϕ1) + γ (v, u, ϕ1) = f (ϕ1) and a(v, ϕ2) − γ (u, u, ϕ2) = 0

(9.2)
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with γ (η, χ, ϕ):= −
1

2

ˆ

�

[η, χ ]ϕ dx for all η, χ, ϕ ∈ V and a(•, •) from (8.2).

For all � = (ξ1, ξ2),� = (θ1, θ2), and � = (ϕ1, ϕ2) ∈ V, define the forms

A(�,�) := a(θ1, ϕ1) + a(θ2, ϕ2),

Ŵ(�,�,�) := γ (ξ1, θ2, ϕ1) + γ (ξ2, θ1, ϕ1) − γ (ξ1, θ1, ϕ2), and F(�):= f (ϕ1).

Then the vectorised formulation of (9.2) seeks � = (u, v) ∈ V such that

N (�;�):=A(�,�) + Ŵ(�,�,�) − F(�) = 0 for all � ∈ V. (9.3)

The trilinear form Ŵ(•, •, •) inherits symmetry in the first two variables from

γ (•, •, •). The following boundedness and ellipticity properties hold [5, 16, 22]

A(�,�) ≤ |||�||||||�|||, |||�|||2 ≤ A(�,�), and Ŵ(�,�,�) � |||�||||||�||||||�|||.

9.2 Four quadratic discretizations

This subsection presents the Morley/dG/C0IP/WOPSIP schemes for (9.3). The spaces

and operators employed in the analysis of the von Kármán equations given in Table

5 are vectorised versions (denoted in boldface) of those presented in Table 3, e.g.,

IM = IM × IM. Recall apw(•, •) from (7.1) and define the bilinear form ah : (Vh +
M(T )) × (Vh + M(T )) → R by

ah(�,�) := apw(θ1, ϕ1) + bh(θ1, ϕ1) + ch(θ1, ϕ1)

+ apw(θ2, ϕ2) + bh(θ2, ϕ2) + ch(θ2, ϕ2).

The definitions of bh and ch for the Morley/dG/C0IP/WOPSIP schemes from Table 3

are omitted in Table 5 for brevity. For all η, χ, ϕ ∈ H2(T ), let γpw(•, •, •) be the

piecewise trilinear form defined by

γpw(η, χ, ϕ):= −
1

2

∑

K∈T

ˆ

K

[η, χ ]ϕ dx

and, for all � = (ξ1, ξ2),� = (θ1, θ2),� = (ϕ1, ϕ2) ∈ H2(T ), let

Ŵ̂(�,�,�):=Ŵpw(�,�,�):=γpw(ξ1, θ2, ϕ1) + γpw(ξ2, θ1, ϕ1) − γpw(ξ1, θ1, ϕ2).

(9.4)

For all the schemes and a regular root � ∈ V to (9.3), let b̂(•, •):=2Ŵpw(�, •, •) in

(3.2). For R, S ∈ {id, IM, J IM}, the discrete scheme seeks a root �h :=(uh, vh) ∈ Vh

to

Nh(�h; �h):=ah(�h, �h) + Ŵpw(R�h, R�h, S�h) − F(J IM�h) = 0 for all�h ∈ Vh .

(9.5)
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Table 5 Spaces, operators, and norms in Sect. 9

Scheme Morley dG C0IP WOPSIP

Xh = Yh = Vh M(T ) P2(T ) S2
0(T ) P2(T )

X̂ = Ŷ = V̂ = V + Vh V + M(T ) V + P2(T ) V + S2
0(T ) V + P2(T )

‖ • ‖X̂ ||| • |||pw ‖ • ‖dG ‖ • ‖IP ‖ • ‖P

P = Q J J IM J IM J IM

Ih id id IC id

IXh
= IVh

= Ih IM IM IM IC IM IM

9.3 Main results

The main results on a priori error control in energy and weaker Sobolev norms for the

Morley/dG/C0IP/ WOPSIP schemes of Sect. 9.2 are stated in this and verified in the

subsequent subsections. Unless stated otherwise, R ∈ {id, IM, J IM} is arbitrary.

Theorem 9.1 (A priori energy norm error control) Given a regular root � ∈ V to

(9.3) with F ∈ H−2(�), there exist ǫ, δ > 0 such that, for any T ∈ T(δ), the unique

discrete solution �h ∈ Vh to (9.5) with ‖� − �h‖h ≤ ǫ for the Morley/dG/C0IP

schemes satisfies

‖� − �h‖h � min
�h∈Vh

‖� − �h‖h +
{

0 for S = J IM,

hmax for S = id or IM.

The a priori estimates in Table 1 hold for von Kármán equations component-wise for

F ∈ H−r (�), 2 − σ ≤ r ≤ 2 and � ∈ V ∩ H4−r (�).

Remark 9.2 (Comparison) Suppose � ∈ V is a regular root to (9.3) with F ∈ H−2(�)

and S = J IM. If hmax is sufficiently small, then the respective local discrete solutions

�M, �dG, �IP ∈ Vh to (9.5) for the Morley/dG/C0IP schemes satisfy

‖� − �M‖h ≈ ‖� − �dG‖h ≈ ‖� − �IP‖h ≈ ‖(1 − �0)D2�‖L2(�). ⊓⊔

Theorem 9.3 (a priori error control in weaker norms) Given a regular root � ∈
V ∩ H4−r (�) to (9.3) with F ∈ H−r (�) for 2 − σ ≤ r , s ≤ 2, there exist ǫ, δ > 0

such that, for any T ∈ T(δ), the unique discrete solution �h ∈ Vh to (9.5) with

‖� − �h‖h ≤ ǫ satisfies

‖� − �h‖Hs (T ) � ‖� − �h‖h

(
h2−s

max + ‖� − �h‖h

)
+
{

0 for S = J IM,

h3−s
max for S = id or IM

(a) for the Morley/dG/C0IP schemes and R = {J IM, IM} and (b) for the Morley

scheme and R = id.
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Theorem 9.4 (a priori WOPSIP) Given a regular root � ∈ V to (9.3) with F ∈
H−2(�), there exist ǫ, δ > 0 such that, for any T ∈ T(δ), the unique discrete solution

�h ∈ Vh to (9.5) with ‖� − �h‖P ≤ ǫ for the WOPSIP scheme satisfies

(a)‖� − �h‖P � |||� − IM�|||pw + |||hT IM�|||pw +
{

0 for S = J IM,

hmax for S = id or IM.

Moreover, if F ∈ H−r (�) for 2 − σ ≤ r , s ≤ 2 and R ∈ {J IM, IM}, then

(b)‖� − �h‖Hs (T ) � ‖� − �h‖P

(
h2−s

max + ‖� − �h‖P

)
+
{

0 for S = J IM,

h3−s
max for S = id or IM.

9.4 Preliminaries

Two lemmas on the trilinear form Ŵpw(•, •, •) from (9.4) are crucial for the a priori

error control.

Lemma 9.5 (boundedness) For any 0 < t < 1 there exists a constant C(t) > 0 such

that any �̂, χ̂ ∈ V + P2(T ), �̂ ∈ V + M(T ), and � ∈ V satisfy

(a)Ŵpw(�̂, χ̂ , �̂) � |||�̂|||pw|||χ̂ |||pw|||�̂|||pw and

(b)Ŵpw(�̂, χ̂ , �) ≤ C(t)|||�̂|||pw|||χ̂ |||pw‖�‖H1+t (�).

Proof of (a). The definition of γpw(•, •, •), Hölder inequalities, and ‖ • ‖L∞(�) �

||| • |||pw in V + M(T ) from [8, Lemma 4.7] establish, for φ̂, χ̂ ∈ V + P2(T ), ξ̂

∈ V + M(T ), that

γpw(φ̂, χ̂ , ξ̂ ) ≤ |||φ̂|||pw|||χ̂ |||pw‖̂ξ‖L∞(�) � |||φ̂|||pw|||χ̂ |||pw|||̂ξ |||pw.

Proof of (b). For φ̂, χ̂ ∈ V + P2(T ) and ξ ∈ V , the definition of γpw(•, •, •),

Hölder inequalities, and the continuous Sobolev embedding H1+t (�) →֒ L∞(�)

[4, Corollary 9.15] for t > 0 show

γpw(φ̂, χ̂ , ξ) ≤ |||φ̂|||pw|||χ̂ |||pw‖ξ‖L∞(�) � |||φ̂|||pw|||χ̂ |||pw‖ξ‖H1+t (�).

This and (9.4) conclude the proof. ⊓⊔

Lemma 9.6 (approximation) Any χ̂ ∈ V+P2(T ),�, v ∈ V, and (v2, vM) ∈ P2(T )×
M(T ) satisfy

(a) Ŵpw(�, χ̂ , (1 − J IM)v2) � hmax|||�||||||χ̂ |||pw‖v − v2‖h ,

(b) Ŵpw((1 − J)vM, v2,�) � hmax|||v − vM|||pw|||v2|||pw|||�|||.
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Proof of (a). For φ ∈ V , χ̂ ∈ V + P2(T ) and v2 ∈ P2(T ), the definition of

γpw(•, •, •), Hölder inequalities, and an inverse estimate hT ‖(1 − J IM)v2‖L∞(T ) �

‖(1 − J IM)v2‖L2(T ) lead to

γpw(φ, χ̂, (1 − J IM)v2) ≤|||φ||||||χ̂ |||pw‖(1 − J IM)v2‖L∞(�)

�|||φ||||||χ̂ |||pw‖h−1
T

(1 − J IM)v2‖.

This, Lemma 7.4.f, and the definition of Ŵpw(•, •, •) conclude the proof of (a).

Proof of (b). For φ ∈ V , v2 ∈ P2(T ), and vM ∈ M(T ), an introduction of �0φ and

γpw((1 − J )vM, v2,�0φ) = 0 from Lemma 7.3.c and Remark 7.5 provide

γpw((1 − J )vM, v2, φ) = γpw((1 − J )vM, v2, φ − �0φ). (9.6)

Hölder inequalities and the estimate ‖φ − �0φ‖L∞(�) � hmax|||φ||| [15, Theorem

3.1.5] provide

γpw((1 − J )vM, v2, φ − �0φ) �hmax|||(1 − J )vM|||pw|||v2|||pw|||φ|||
�hmax|||v − vM|||pw|||v2|||pw|||φ|||

with |||(1 − J )vM|||pw � |||v − vM|||pw from Lemma 7.4.e in the last step. Recall (9.4)

and (9.6) to conclude the proof of (b). ⊓⊔

9.5 Proof of Theorem 9.1

The conditions in Theorem 5.1 are verified to establish the energy norm estimates. The

hypotheses (2.3)–(2.6) follow from Lemma 7.7 (component-wise). The paper [11] has

verified hypothesis (H1) for Morley/dG/C0IP in the norm ‖ • ‖h that is equivalent to

||| • |||pw, ‖ • ‖dG, and ‖ • ‖IP by Lemma 7.1.

For any θh ∈ Vh with ‖θh‖Vh
= 1, Lemma 9.5.b with ||| • |||pw ≤ ‖ • ‖h implies

b̂(Rθh, •) ∈ H−1−t (�) for R ∈ {id, IM, J IM}. Therefore, there exists a unique

χ ∈ V ∩ H3−t (�) with ‖χ‖H3−t (�) � 1 such that A(χ ,�) = b̂(Rθh,�) for all

� ∈ V. Hence, for Morley/dG schemes (resp. C0IP scheme), the boundedness of R

(from Lemma 7.7), Lemma 7.1 (resp. Remark 7.9), and Lemma 7.3.d provide (H2)

with δ2 � h1−t
max.

The proof of (H3) starts as in Sect. 8.5 and adopts Lemma 9.6.a (in place of

Lemma 8.9.a) to establish (8.11) with t = 0 and the slightly sharper version δ3 � hmax.

Since δ3 = 0 for S = Q = J IM, it remains S = id and = IM in the sequel to

establish (H3). Given yh and θh ∈ Vh of norm one, define v2:=S yh ∈ P2(T ) and

observe Q yh = J IM yh = J IMv2 (by S = id, IM). Hence with the definition of

b̂(•, •), Lemma 9.6.a shows

|̂b(Rθh, (S − Q) yh)| = |̂b(Rθh, v2 − J IMv2)| � hmax|||u||||||Rθh |||pw‖v2‖h .

The boundedness of R and IM and the equivalence of norms show |||Rθh |||pw‖v2‖h � 1

and hence δ3 � hmax.
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As in the application for Navier-Stokes equations, Remark 7.9 leads to hypothesis

(H4) with δ4 < ǫ. The existence and uniqueness of a discrete solution �h then follows

from Theorem 4.1.

Note that for vh ∈ M(T ), Qvh = J IMvh . For Morley/dG/C0IP, Lemma 9.6.a with

v = 0 for S = id; and Lemma 9.6.a with v2 ∈ M(T ) and v = 0 for S = IM show

‖Ŵ̂(�,�, (S − Q)•)‖V∗
h

�

{
0 for S = J IM,

hmax for S = id or IM.

The energy norm error control then follows from Theorem 5.1. ⊓⊔

9.6 Proof of Theorem 9.3

Given 2 − σ ≤ s ≤ 2 and G ∈ H−s(�) with ‖G‖H−s (�) = 1 , the solution z ∈ V

to the dual problem (6.1) belongs to V ∩ H4−s(�) by elliptic regularity. This and

Lemma 7.3.d verify

|||z − IMz|||pw � h2−s
max‖z‖H4−s (�) � h2−s

max. (9.7)

Proof of Theorem 9.3.a. for R = J IM. The assumptions in Theorem 6.2 with

Xs :=Hs(T ) are verified to establish the lower-order estimates. Hypothesis (Ĥ1) for

Morley/dG/C0IP schemes is verified in [11, Lemma 6.6] for an equivalent norm

(with Lemma 7.1) and Lemma 7.7 for R = J IM (applied component-wise to vec-

tor functions). The conditions (2.3)–(2.6) follow from Lemma 7.7. In Theorem 6.2,

set zh = Ih IMz with Ih = id for Morley/dG resp. Ih = IC for C0IP. Notice that (9.7)

implies

‖z − zh‖h � h2−s
max (9.8)

for Morley/dG with ‖ • ‖dG ≈ ||| • |||pw in V + M(T ). Remark 7.9 and (9.7) provide

(9.8) for C0IP. For Morley/dG/C0IP, Lemma 7.4.f implies ‖�h − P�h‖Hs (T ) �

h2−s
max‖� − �h‖h .

The difference Ŵpw(R�h, R�h, Qzh) − Ŵ(P�h, P�h, Qzh) vanishes for R =
J IM = P (for all schemes). It remains to control the term Ŵ̂(�,�, (S − Q)zh) for

S ∈ {id, IM, J IM}.
For S = Q = J IM, Ŵpw(�,�, (S − Q)zh) = 0. For S = id, Lemma 9.6.a and

(9.8) establish

Ŵpw(�,�, (1 − J IM)zh) � hmax|||�|||2‖z − zh‖h � h3−s
max.

For S = IM, Lemma 9.6.a applies to vh = IMzh . A triangle inequality and Lemma 7.7

reveal ‖z − IMzh‖h � ‖z − zh‖h � h2−s
max with (9.8) in the last step. Hence,

Ŵpw(�,�, (IM − J IM)zh) � hmax|||�|||2‖z − zh‖h � h3−s
max.

⊓⊔
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Proof of Theorem 9.3.a. for R = IM. Elementary algebra and the symmetry of

Ŵpw(•, •, •) with respect to the first and second argument recast the last two terms on

the right-hand side of Theorem 6.2 as

Ŵpw(IM�h, IM�h, J IMzh) − Ŵpw(J IM�h, J IM�h, J IMzh)

=2Ŵpw((1 − J)IM�h, IM�h, J IMzh)

− Ŵpw((1 − J)IM�h, (1 − J)IM�h, J IMzh). (9.9)

The arguments in (8.24)–(8.26) for (�,�h) replacing (u, uh) and (9.8) reveal

|||� − IM�h |||pw � ‖� − �h‖h and |||z − J IMzh |||pw � h2−s
max.

This and Lemma 9.6.b for the first term in (9.9) (resp. Lemma 9.5.a and 7.4 .e for the

second) show

Ŵpw((1 − J)IM�h, IM�h, J IMzh) � hmax‖� − �h‖h

Ŵpw((1 − J)IM�h, (1 − J)IM�h, J IMzh) � |||(1 − J)IM�h |||2pw � ‖� − �h‖2
h .

This leads in (9.9) to

Ŵpw(IM�h, IM�h, J IMzh) − Ŵpw(J IM�h, J IM�h, J IMzh)

� ‖� − �h‖h(hmax + ‖� − �h‖h). (9.10)

The remaining terms are controlled as in the above case R = J IM. This concludes

the proof. ⊓⊔

Proof of Theorem 9.3.b. Since �h = IM�M, and P = Q = J for the Morley FEM, the

last two terms of Theorem 6.2 read Ŵpw(�M, �M, J IMzh)−Ŵ(J�M, J�M, J IMzh)

and are controlled in (9.10). This, Theorem 6.2, and the above estimates from the proof

for R = J IM in (a) conclude the proof. ⊓⊔

Proof of Theorem 9.4. The proofs at the abstract level in Sects. 2–6 follow as further

explained for the Navier Stokes equations. A straightforward adoption of the arguments

provided in the proofs of Theorem 9.1 and 9.3.a lead to (H2)-(H4) and the a priori

error control. ⊓⊔
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