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Abstract: This study presents a variational mode decomposition (VMD)-based approach to analyse wide-area (WA)
measurements based signals. The commonly used empirical mode decomposition (EMD) has limitations such as sensitivity to
noise and sampling rate. However, VMD is an entirely non-recursive algorithm, where the modes are extracted concurrently.
These modes help in extracting dynamic patterns of different power system disturbances. The performance of the proposed
scheme is extensively validated on the IEEE-39 bus New England test system. The modes generated and the frequency
deviation contours of the disturbances including generation loss, fault and line outage are assessed using VMD and the results
provide improved performance in terms of decomposition quality compared with the existing EMD technique. Furthermore, a
data-mining model known as decision tree is used to classify different power system disturbances based on intrinsic mode
functions generated through VMD. The suggested method shows improved decomposition quality and classification accuracy.
Thus, the proposed scheme is a potential candidate for improving WA situational awareness along with a post-mortem analysis
of real events occurring in a power system.

1 Introduction
Wide-area (WA) monitoring plays a significant role in improving
the situational awareness in a power system [1]. Phasor
measurement units (PMUs) are backbone of wide-area
measurements (WAMs) system, which provide data at a rate of 30
or 60 sample(s) per second. In recent times, information from
PMUs are utilised to address many power system problems such as
vulnerability assessment, developing catastrophic predictors, wide-
area protection, disturbance analysis [2–7]. Analysis of the
constituent modes of the real-time data helps in achieving the
aforementioned objectives. The nature and severity of the
disturbance can be known by observing the frequency and damping
of the modes. This information will help in revealing the health of
the power system. Furthermore, this will also help in predicting
outcome of an evolving contingency. It is reported that most of the
recent cascaded outages could have been avoided with better
situational awareness [7, 8]. One of the applications of the
proposed algorithm is to enhance wide-area situational awareness
(WASA). WASA algorithm can assist many applications running in
the system control centre. One of such applications is triggering the
supervisory protection of transmission lines [7, 8]. A reliable
WASA algorithm should be able to differentiate no-fault situations
from line faults. Most of the relay mal-operations are caused due to
loss of security of the relay. Thus, an efficient WASA algorithm
can assist the existing relays in taking the reliable relaying
decision.

However, analysis of non-linear and non-stationary power
system signals is a subject of in-depth investigation in WA
monitoring. Event detection using PMU data is an ongoing
research area and it is reported that non-stationary nature of PMU
data poses difficulty to traditional disturbance detection techniques
[8]. Many PMU measurement-based event detection techniques
have been reported in recent times [8–10]. The signals obtained
from the PMUs can either be processed by time-domain analysis or
through frequency-domain analysis. In case of frequency-domain
analysis, Fourier transform (FT) is mostly used to obtain frequency
spectrum of the input data. However, FT has its inherent drawback
such as incapability in providing time information. Time–

frequency analysis has gained its popularity in recent times mainly
because of its capability to provide frequency information of the
input signal in time domain. The existing time–frequency analysis
tools include short-time FT, wavelet transform (WT), S-transform
(ST), fast ST, and Wigner–Ville distribution. These techniques are
all successfully used in many power system applications such as
fault detection, islanding detection, and power quality disturbance
detection [8–13]. However, these techniques are having some
inherent limitations such as poor time–frequency resolution due to
their decomposition basis, sensitivity to noise and sampling [14,
15].

Most recently, empirical mode decomposition (EMD)-based
time–frequency analysis methods which have significantly higher
time–frequency resolution have also been used in applications such
as identifying inter-area oscillations [16], identification of
generator coherency [17], and analysis of time-varying waveforms
in power quality [18]. The operation in EMD includes recursive
detection of local maxima or minima in the input waveform which
further predicts the upper or lower envelopes. The average of the
envelope is then removed as ‘low-pass’ centreline. Thus, it isolates
the high-frequency oscillations as ‘mode’ of the input waveform
and continues recursively on the remaining ‘low-pass’ centreline.
However, EMD-based techniques have certain limitations such as
its sensitivity to noise and sampling [15].

Variational mode decomposition (VMD) technique was
reported for the first time in [15]. It is a non-recursive
decomposition technique for adaptive and quasi-orthogonal signal
decomposition. VMD algorithm can decompose a multicomponent
signal into a finite number of band-limited intrinsic mode functions
(IMFs) concurrently [15]. In this algorithm, Wiener filtering is
embedded directly in Fourier domain to update the mode.
Moreover, the VMD technique is reported to be more robust to
noise compared with the existing EMD-based decomposition
technique. The proposed research work aims to develop VMD-
based disturbance analysis scheme to enhance situational
awareness in power system. The disturbances may be classified as
real power events or reactive power events.
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The existing PMUs provide positive sequence voltage and
current information along with frequency and rate of change of
frequency. Change in real power mostly affects frequency while
change in reactive power affects the positive sequence voltage.
Thus, VMD can be applied to these two signals to achieve the
objective of disturbance analysis. In the proposed paper, frequency
deviation information was used to illustrate the effectiveness of the
VMD algorithm. The analysis can take place in real time where the
signals obtained from the PMUs can be decomposed and important
information regarding the system can be retrieved. Furthermore,
post-mortem analysis (PMA) following any disturbance can be
carried out for the power system. Both the types of analysis are
very much essential for modern smart power systems in order to
enhance the security and reliability of the system. Furthermore,
disturbances such as generator outage, line outage and line fault
induce different modes in the frequency or voltage signal. Thus,
voltage or frequency waveforms carry unique information with
respect to each event. Time–frequency approach-based techniques
are improved signal processing algorithms to decompose any
signal into time-varying modes. These spectral modes capture
time-varying statistical properties of a signal. It is shown that
VMD-based analyser helps in extracting accurate modes from the
test signal which is further utilised by the decision tree (DT) model
to classify different types of power system disturbances.

The remainder of this paper is organised as follows: Section 2
explains the proposed scheme. Section 3 presents the simulation
results followed by a discussion on the performance of the
proposed scheme in Section 4. Section 5 is the concluding section.

2 Proposed disturbance assessment scheme
EMD was introduced for the first time by Huang et al. [19]. It
decomposes a signal into principal modes. However, it suffers from
drawbacks such as lack of mathematical theory along with its poor
performance in the presence of noise [15]. Another class of
methods includes use of wavelets. The recent one is called
empirical WT [20]. However, the existing decomposition tools
such as EMD and WT have the following drawbacks associated
with them:

• Poor performance in the presence of noise.
• No provision for backward error correction because of the

available recursive sifting in the existing methods.
• Wavelet-based approach has hard band limit.
• If the input signal contains two modes having frequencies,

which fall within an octave, then EMD fails to separate these
modes.

• The first IMF generated through EMD may be multicomponent
if the highest two frequencies present in the input signal comes
under one octave and if the input signal comprises a weak
component having high frequency along with a strong
component of low frequency.

The recently proposed VMD [15] addresses the aforementioned
issues. Here, a multicomponent signal can be decomposed into a
set of IMFs which are band limited. In other words, discrete
number of modes can be obtained from a real-valued input signal.
The modes are characterised with specific sparsity properties while
regenerating the original input waveform. IMF vm t  can be written
as

vm(t) = Amcos(∅m(t))) (1)

where vm t  is the amplitude modulated frequency modulate (AM-
FM) signal and ∅m(t) is the non-decreasing function.

It is to be noted that the envelope Am and the instantaneous
frequency ωm t  vary much slower than ∅m t . In case of VMD, the
sparsity characteristics of each mode are selected to be its
bandwidth. Thus, each mode m is mostly compact around a central
frequency ωm. The central pulsation ωm is calculated during the
process of decomposition. The bandwidth of a mode is assessed by
the following three rules: (i) The analytical signal corresponding to

each mode vm is computed using Hilbert transform. (ii) Each
mode's frequency spectrum is shifted to base band. (iii) Finally, H1

Gaussian smoothness of the demodulated signal is used to estimate
the frequency. The final constrained variational problem is defined
by [15]

min
{vm}, {ωm}

∑
m

∥ ∂t δ t +
j

πt
∗ vm t e− jωmt ∥

2

2

subjected to ∑
m

vm = f

(2)

where vm is the mth mode and ωm is the centre frequency around
which vm is mostly constant.

To address (2), the authors in [15] have introduced a quadratic
penalty and Lagrangian multiplier. The following equation is used
to set the augmented Lagrangian:

ℒ vm, ωm, λ = α∑
m

∥ ∂t δ t +
j

πt
∗ vm t e− jωmt ∥

2

2

+

∥ f − ∑
m

v
∥

2

2

+ λ, f − ∑
m

v
(3)

where α is a balancing parameter.
To solve the variational problem in (3), alternate direction

method of multiplier (ADMM) approach is used. Thus, during each
shifting operation, different decomposed modes and centre
frequency are produced using the ADMM technique. The solutions
in spectral domain results into each mode represented as

v^m =
f
^

ω − ∑i ≠ m v^m ω + λ
^
(ω)/2)

1 + 2α ω − ωm
2 (4)

There are mainly three steps involved in VMD and are as
follows:

(i) modes update
(ii) centre frequency update
(iii) dual ascent update

(i) Modes update: In VMD, Wiener filtering is embedded in order
to update the mode. The process of updating modes is
accomplished in Fourier domain by tuning a filter to the centre
frequency ωm

n

v^m
n + 1

ω =
f
^

ω − ∑i < m v^i
n + 1

ω − ∑i > m v^i
n

ω + (λ
^n

(ω)/2)

1 + 2α ω − ωm
n 2

(5)

(ii) Centre frequency update: the following equation is used to
update the centre frequency:

ωm
n + 1 =

∫ 0

∞
ω v^m

n + 1
ω

2
dω

∫ 0

∞
v^m

n + 1
ω

2
dω

(6)

(iii) Dual ascent update: the Lagrangian multiplier is updated using
the following equation:

λ
^n + 1

= λ
^n

+ τ f
^

− ∑
m

v^m
n + 1 (7)

The process of signal decomposition continues till

∑
m

∥ v^m
n + 1 − vm

n ∥2

2
/∥ v^m

n ∥2

2
< ε (8)

The detailed theoretical and mathematical background of VMD
can be obtained from [15].

Let y t  be the Hilbert transform of IMF v(t), then the analytic
signal can be computed by
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x t = v t + iy t = A t exp i∅ t (9)

where y t = (1/π)P∫
−∞
∞ (v(τ)/(t − τ)) dτ. P is the Cauchy integral

value.
The instantaneous frequency (IF) is computed using the

following equation:

ω(t) =
1

2π

v(t)(dy(t)/dt) − v(t)(dv(t)/dt)y(t)
v

2(t) + y
2(t)

(10)

Instantaneous amplitude (IA) is computed by using the
following equation:

A t = v
2

t + y
2

t (11)

VMD produces one IF for each IMF at each time sample. Thus,
a multitude of instantaneous frequencies is formed at each time
sample. Both IF and IA are function of time. Thus, a three-
dimensional space is defined as [t, ω(t), A(t)]. Let

G ω, t = Re ∑
i = 1

k

Ai t ei∫ i
ω(t) dt (12)

where k is the number of modes. The 3D space is generalised by
converting the two variable function G ω, t  into three variables
function t, ω(t), A(t)  in which, A t = G ω(t), t . In this manner,
the combined time–frequency distribution of the signal is acquired
[14].

To show the robustness of VMD-based decomposition in the
presence of noise, the following synthetic signal is used as input to
both VMD and EMD algorithms:

u t = cos 100πt +
1
5

cos 300πt +
1
14

cos 500πt + μ (13)

As seen from (13), the signal consists of three harmonic
components (50 Hz, 150 Hz and 250 Hz) along with Gaussian
additive noise (μ) as shown in Fig. 1a. The Mode 1, Mode 2 and
Mode 3 components estimated using VMD are shown in Figs. 1b–
d, respectively. As shown in figures, all the frequency components
are recovered efficiently. The strong low-frequency signal is
detected with highest quality. 

The same input signal is passed through EMD-based
decomposition and as shown in Fig. 2, EMD produces eight
estimated modes. It is observed that the first two modes consist of
highest-frequency harmonic along with considerable amount of
noise. The sixth mode seems to retain most of the low-frequency
harmonics. However, this mode is also having significant
distortion. Thus, it is observed that VMD-based decomposition is
more robust to noise compared with EMD-based technique. 

The modes obtained through VMD are further utilised to
classify different power system events such as generator outage,
line outage and line fault. A data-mining model known as DT is
used to accomplish the above task. The reason behind the selection
of DT as a classifier is its capability to provide transparent
solution. DT has been successfully applied to many recent power
system applications such as fault classification, dynamic security
assessment, fault detection [2, 3, 7, 21]. The flowchart of the
proposed disturbance assessment scheme is shown in Fig. 3. As
shown in the figure, the IMFs resulted due to VMD are passed
through a DT model. The DT model is trained to classify different
power system events. Furthermore, if any poorly damped modes
are observed following VMD analysis, then the corresponding
damping controller can be activated to damp-out those oscillations.
The detailed results corresponding to mode extraction is discussed
in Section 3 and the disturbance classification part is detailed in
Section 4. 

3 Test cases and result analysis
The proposed VMD-based disturbance analysis scheme has been
tested on the New England 39-bus system (Fig. 4). Siemen's

commercial simulation software package named Power System
Simulation for Engineering (PSS/E) is used for modelling the test
system. The dynamic and sequence component data required for
simulation in PSS/E environment are obtained from [22].
Disturbances such as sudden generator outage, line outage, and
fault on transmission lines are simulated in PSS/E. The simulation
window considered for the proposed study is 3 s (362 numbers of
samples). The disturbances are applied at 1 s (sample no. 124). As
the governors take almost 2 s to participate in controlling the
system frequency [8], the simulation considers the post disturbance
time frame of 2 s into account which is considered as natural
response of the system. Thus, the total time frame of study
becomes 3 s. The frequency deviation signals are stored in an excel
file. The data are further used as input to VMD algorithm which is
coded in MATLAB 2015(b) environment. The algorithm is tested
for different types of disturbances which includes generator outage,
line outage, and fault on the transmission line. Both EMD- and
VMD-based techniques are used to process the input signal. The
test results are discussed as follows:

(i) Generator outage on bus-33: New England 39-bus test system
consists of 10 generators. Generator outage may create stressed
condition in the power grid. Thus, it is essential to identify any
generator outage condition, and it should be followed by the
necessary control action. To study the effect of generator outage,
the generator at bus-33 is tripped at 1 s (at sample no. 124), and the
frequency deviation at bus-19 is monitored as shown in Fig. 5a.
The reason behind observing frequency deviation at bus-19 is that
this bus is closest to the disturbance location. The frequency
deviation signal obtained through PSS/E simulation is passed
through both VMD and EMD decomposition algorithm. The three
modes obtained through VMD are shown in Fig. 5b and the seven
EMFs obtained through EMD are shown in Fig. 6a. The contours
of the reconstructed composite signal after VMD and EMD
decomposition are shown in Figs. 5c and 6b, respectively. The
results reveal that frequency deviation contour gives improved
resolution compared with EMD-based decomposition. This shows
the efficient local decomposition quality of VMD. Owing to the
presence of Wiener filtering which updates the mode directly in
Fourier domain, the VMD-based scheme is more robust to noise.
(ii) Line outage of 16–19: Sudden line outage is also one of the
large disturbances which might occur in the power transmission
system. Line outage may also induce stressed condition in the
power system. To study the effect of line outage, lines 16–19 of the
test system is tripped at 1 s (sample no. 124) and the corresponding
frequency deviation signal is shown in Fig. 7a. The frequency
deviation signal is analysed through both VMD and EMD
algorithms. The three modes obtained from VMD are shown in
Fig. 7b and the seven EMFs obtained through EMD are shown in
Fig. 8a. The contours of the reconstructed composite signal after
VMD and EMD decomposition are shown in Figs. 7c and 8b,
respectively. Once again it is observed that it is easier to
distinguish disturbance from healthy power system condition using
VMD compared with EMD. This feature will be very much useful
for modern days PMU-based WA monitoring system to enhance
situational awareness in the power system.
(iii) Fault on 16–19: Transmission line faults are most common
disturbance those occur in the power transmission system. Distance
relays are generally used to identify and isolate the faulty
transmission line in the power system. To study the effect of fault,
a three-phase bolted fault is incepted on lines 16–19 at 1 s (sample
no. 124) and the corresponding frequency deviation is measured at
bus-16 as shown in Fig. 9a. The three modes obtained through
VMD is shown in Fig. 9b and the seven EMFs obtained through
EMD is shown in Fig. 10a. The contours of the reconstructed
composite signal after VMD and EMD decomposition are shown in
Figs. 9c and 10b, respectively. Similarly, the time–frequency
instantaneous spectrum for both the methods is given in Figs. 9d
and 10c, respectively. It is inferred from the simulation results that
the IMFs obtained through EMD of the faulted signal are all
distorted. Thus, it is difficult to judge the contribution of each IMF
which ultimately makes the signal analysis more complex.
However, the three modes obtained using VMD clearly indicates
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each frequency component present in the faulted signal and thus,
the signal analysis becomes easier. The time–frequency resolution

of VMD is also better than that of EMD. This will help in
localising and detecting the disturbances efficiently. Thus, the

Fig. 1  Results of VMD based decomposition for a synthetic signal
(a) Composite input signal with noise,
(b) Mode 1 extracted by VMD, (c) Mode 2 extracted by VMD, (d) Mode 3 extracted by VMD

 

Fig. 2  Result of EMD decomposition
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process of efficient tone detection is shown using VMD.
Furthermore, the noise robustness of VMD makes it a suitable
candidate for real-time disturbance analysis in the power
transmission system.

4 Discussion
The main focus of this paper is to introduce a new signal
decomposition technique named VMD for enhancing WASA along
with PMA. It is reported that most of the recent blackouts
including four major North American blackouts and the 2012
Northern India blackout were due to the lack of situational
awareness [23, 24]. Thus, efficient situational awareness can help
in avoiding cascaded outages in the system. Furthermore,
extracting dynamic patterns from WA measurement signals is part
of PMA following any disturbance in the system. In the proposed

study, two statistical features are extracted to locate the dominant
IMF and to observe the effect of different disturbances on the
extracted parameters. The features are further utilised to classify
different power system events. The two features are

(i) energy content of the IMF (ECI)
(ii) standard deviation of the IMF (SDI).

Deviation in energy content of an IMF (ΔECI) is defined as the
difference in ECI after and before the disturbance. ΔECI is derived
as follows:

ΔECI = ∑ yi
2

a
− ∑ yi

2

b
(14)

Standard deviation is derived as follows:

SDI = standard deviation of yi (15)

where yi is the discrete-time analytic signal of IMF i. In the present
study, ‘i’ is considered to be 1, 2, and 3. That means only first three
IMFs are considered for building the DT model. The reason for
choosing first three IMFs comes from the experience and also by
assuming that most frequency content lies in the first three modes
of oscillation. In this paper, three types of power system
disturbances such as generator outage (C-I), line outage (C-II), and
line fault (C-III) are considered. ΔECI and SDI values
corresponding to each test cases are depicted in Table 1. It is
observed that IMF1 is the dominating IMF having maximum
energy content among the three IMFs produced through VMD.
Furthermore, the ΔECI and SDI corresponding to Case-III (fault
case) is maximum when compared with other disturbances. This
information can help in differentiating fault from other power
system disturbances. Thus, the first three IMFs are used as input to
the DT model. Here, the target outputs are divided into three
classes. Rattle software package is used to develop DT-based
classifier [21, 25–27]. Thus overall, six features are extracted. To
classify different disturbances in the power system, the PMU
information corresponding to generator buses are used. This is a
feasible option because generator buses are usually less in numbers
compared with total number of buses. Post disturbance one cycle
data is utilised for the analysis. Total 10,117 test cases are

Fig. 3  Flowchart of the proposed disturbance assessment scheme
 

Fig. 4  IEEE-39-bus system
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considered out of which 70% cases are used for training the DT
and rest 30% are used for testing. The test cases also include
different types of fault with variations in fault parameters such as
fault resistance, fault location, fault inception angle. Ten generator
outage cases along with 46 line outage cases are included in the
input file. The test data sheet also includes signals with noise of
SNR 20 dB. Table 2 depicts the confusion matrix generated after
testing period. All total, 3000 fault scenarios, four generator outage
scenarios, and 31 line outage scenarios are used as test cases. The
results show that the data-mining model provides a classification
accuracy of close to 99%. The proposed scheme is compared with
some of the existing signal processing tools such as WT, ST, and
EMD. To have a balanced comparison, the classifier DT is kept
constant. The performance comparison is tabulated in Table 3. It is

observed that the better decomposition quality of VMD helps in
achieving an improved classification accuracy. 

The mathematical analysis in Section 2 followed by the
simulation results in Section 3 of this paper reveals the following
facts regarding VMD:

• VMD scheme has better tone detection, tone separation, and
noise robustness qualities compared with EMD.

• Lack of mathematical foundation of EMD is its biggest
drawback. However, this is not an issue for VMD.

• One of the most important features of VMD is that the IMFs
obtained through VMD are concurrent.

• The use of Wiener filter in VMD makes it a noise robust
algorithm.

Fig. 5  Performance of VMD for generator outage
(a) Frequency deviation (generator 33 outage),
(b) Three modes obtained after VMD decomposition (generator 33 outage),
(c) Frequency deviation contour after VMD decomposition (generator 33 outage)
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• VMD is also robust to sampling.
• The IMF generated through VMD is compact around a centre

pulsation. Thus, each IMF contains the information on the local
characteristics of the input signal.

• The instantaneous frequency spectrum following VMD reveals
the spectral characteristics of the various reflections with much
more clarity than the corresponding EMD results.

The authors see two kinds of application for the proposed
scheme.

(i) VMD algorithm can be incorporated in modern days PMUs, so
that real-time disturbance analysis can be achieved. The inherent
noise robustness quality of VMD along with its ability to extract
meaningful information from the raw input data in the time as well
as in time–frequency domains makes it a potential candidate for
disturbance analysis.
(ii) The second application is the PMA of any real world event
using wide-area information. This can be accomplished in the
system protection centre (SPC) where information from all the
PMUs are coming. Tasks such as cascading failure analysis are part
of such application.

5 Conclusions
In this paper, a VMD-based disturbance analysis scheme is
proposed. The ability of VMD to extract useful information in both
time and time–frequency domain is very much useful in WAMs-
based assessment of disturbance records. VMD shows very strong
local decomposition capability along with its immunity to noise. It
produces band-limited IMFs with specific sparsity property. This
property is very much useful in analysing the non-stationery and
non-linear power system signals. Furthermore, the instantaneous

frequency spectra obtained through VMD shows much better time–
frequency resolution than that of EMD. Disturbances such as
generator outage, line outage, and transmission line fault are
analysed through VMD. A DT-based disturbance classification
scheme is proposed. The modes obtained through VMD are utilised
to build the disturbance classifier. A classification accuracy of
close to 99% is achieved through the proposed scheme. The
proposed scheme can help in improving WASA in modern power
transmission system.

Fig. 6  Performance of EMD for generator outage
(a) Seven IMFs obtained after EMD decomposition (generator 33 outage),
(b) Frequency deviation contour after EMD decomposition (generator 33 outage)
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Fig. 7  Performance of VMD for line outage
(a) Frequency deviation (lines 16–19 outage),
(b) Three modes obtained after VMD decomposition (lines 16–19 outage),
(c) Frequency deviation contour after VMD decomposition (lines 16–19 outage)
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Fig. 8  Performance of EMD for line outage
(a) Seven IMFs obtained after EMD decomposition (lines 16–19 outage),
(b) Frequency deviation contour after EMD decomposition (lines 16–19 outage)
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Fig. 9  Performance of VMD for line fault
(a) Frequency deviation (fault on lines 16–19),
(b) Three modes obtained after VMD decomposition (fault on lines 16–19),
(c) Frequency deviation contour after VMD decomposition (fault on lines 16–19), (d) Instantaneous spectrum time–frequency contour after VMD decomposition (fault on lines 16–
19)
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Fig. 10  Performance of EMD for line fault
(a) Seven modes obtained after EMD decomposition (fault on lines 16–19),
(b) Frequency deviation contour after EMD decomposition (fault on lines 16–19),
(c) Instantaneous spectrum time–frequency contour after EMD decomposition (fault on lines 16–19)
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Table 1 Energy content and standard deviation comparison
Disturbance C-I C-II C-III
ΔECI
 IMF1 2.2689 1.1174 7.5629
 IMF2 1.3197 0.6328 1.8347
 IMF3 0.3211 0.1730 0.4737
SDI
 IMF1 0.0823 0.0291 0.1705
 IMF2 0.0543 0.0229 0.074
 IMF3 0.0147 0.0071 0.0189

Italic values indicate higher magnitude compared to other values
 

Table 2 Confusion Matrix generated after testing period
Cases C-I (actual) C-II (actual) C-III (actual)
C-I (predicted) 4 31
C-II (predicted) 31
C-III (predicted) 2969
classification accuracy, % 100 100 98.96

 

Table 3 Classification accuracy (%) comparison with different signal processing tools
Cases EMD and DT WT and DT ST and DT Proposed scheme
C-I 100 100 100 100
C-II 87 80.64 83.87 100
C-III 92.15 88.19 91.12 98.96
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