Header menu link for other important links
X
An inverse Ruddlesden-Popper nitride Ca7(Li1−xFex)Te2N2 grown from Ca flux
G. Wang, , Q. Lin, P. McVey, R.S. Houk, L. Wu, S.L. Bud’ko, P.C. Canfield
Published in Taylor and Francis Ltd.
2018
Volume: 98
   
Issue: 3
Pages: 118 - 125
Abstract
Nitridoferrates containing monovalent iron ions are a class of materials of recent interest as potentially novel magnetic materials. Aiming at the exploration of nitridoferrates of calcium, we report the single crystal growth from Ca flux and crystal structure of the first member (n = 2) of a series of inverse Ruddlesden-Popper nitrides with a general formula of An −1A'2BnX3n+1, where A = Li/Fe, A' = Te, B = N, and X = Ca. Single crystal X-ray diffraction analyses indicate the crystal with a composition of Ca7(Li0.32(1)Fe0.68(1))Te2N2 and the tetragonal space group I4/mmm (a = 4.7884(1) Å, c = 25.3723(4) Å, Z = 2). The structure features alternately stacking NaCl-type A'X slabs and the perovskite-type ABX3 slabs along the c axis. The Li/Fe atoms are located in cuboctahedral cavities surrounded by eight Ca6N octahedra in the ABX3 slab. This work demonstrates the viability of the Ca-rich flux as a suitable solvent for the exploration of new complex nitrides with interesting crystal structure and properties. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.
About the journal
JournalData powered by TypesetPhilosophical Magazine Letters
PublisherData powered by TypesetTaylor and Francis Ltd.
ISSN09500839