In the present scenario, metal cutting industries are looking for alternative cooling techniques to conventional cooling to satisfy the stringent environment regulations as well as lower productivity problems while machining of difficult to cut materials. Cryogenic machining is a novel eco-friendly as well as efficient cooling techniques. In present work, an attempt has been made to study the effect of process parameters on turning performance characteristics and the development of correlation models between the input process parameters and output responses while machining of difficult to cut materials 17-4 precipitated hardened stainless steel (PH SS) using response surface methodology (RSM) under the cryogenic cooling environment. The turning process parameters considered in the present study are cutting velocity (v), feed rate (f) and depth of cut (d) whereas responses are tool flank wear (Vb), surface roughness (Ra) and material removal rate (MRR) respectively. RSM based face centered central composite design (CCD) experimental design has been used to perform the experiments. From the conformation test results, it was observed that very good agreement was found between the actual and predicted values, which represent that the developed predictive models are well effective with a maximum of ± 5% error. © 2018, Springer Science+Business Media B.V., part of Springer Nature.