This paper addresses the dynamic control of a 2PRP-2PPR vertical planar parallel manipulator. This proposed manipulator can be used for the purpose of lower limb rehabilitation applications (in specific sitting/lying type of lower limb rehabilitation applications). The kinematic and dynamic model of the proposed manipulator are derived and discussed. An augmented PID control along with an uncertainty estimator is proposed for the motion control of the manipulator. The proposed system performance along with the motion controller is demonstrated numerically for the application of lower limb rehabilitation therapies using a clinically recorded gait data. The robustness of the controller and its parameter sensitivity are analysed through different operating conditions and their results are presented. Note: P—stands for Prismatic/translation joint and R—stands for Rotary/revolute joint. © Springer International Publishing AG 2017.