Header menu link for other important links
Classification of out-of-time-order correlators
F.M. Haehl, R. Loganayagam, , M. Rangamani
Published in SciPost Foundation
Volume: 6
Issue: 1
The space of n-point correlation functions, for all possible time-orderings of operators, can be computed by a non-trivial path integral contour, which depends on how many time-ordering violations are present in the correlator. These contours, which have come to be known as timefolds, or out-of-time-order (OTO) contours, are a natural generalization of the Schwinger-Keldysh contour (which computes singly out-of-time-ordered correlation functions). We provide a detailed discussion of such higher OTO functional integrals, explaining their general structure, and the myriad ways in which a particular correlation function may be encoded in such contours. Our discussion may be seen as a natural generalization of the Schwinger-Keldysh formalism to higher OTO correlation functions. We provide explicit illustration for low point correlators (n ≤ 4) to exemplify the general statements. Copyright F. M. Haehl et al.
About the journal
JournalSciPost Physics
PublisherSciPost Foundation
Open AccessNo