This work presents the use of osmotic microbial fuel cell (OsMFC), for the first time, to concentrate nutrients and recover water and energy from source separated urine. Four sets of concentration of fresh urine as feed and NaCl as draw were examined: 10% fresh urine vs 0.25 M NaCl; 10% fresh urine vs 2 M NaCl; fresh urine vs 0.25 M NaCl; and fresh urine vs 2 M NaCl. A maximum water flux of 14.27 LMH was attained when 10% of fresh urine and 2 M of NaCl were used as feed and draw solutions, respectively. Additionally, OsMFC concentrates ~99% of TOC, TN, NH4+, and 100% of PO43− and NO3− from urine at the feed side. Polarization studies indicate that the power generation in OsMFC is related to the rate of change of conductivity and the initial conductivity of the anolyte. The maximum (0.12187 W m−3) and minimum power densities (5.3372 × 10−4 W m−3) were obtained for the conditions of fresh urine vs 0.25 M NaCl and 10% fresh urine vs 0.25 M NaCl, respectively. The study shows that OsMFC is an effective pretreatment process to concentrate nutrients from urine by recovering water and energy, simultaneously. © Elsevier Ltd