A random fiber bundle model with a mixed Weibull distribution is studied under the global load sharing scheme. The mixed model consists of two sets of fibers. The threshold strength of one set of fibers is randomly chosen from a Weibull distribution with a particular Weibull index, and another set of fibers with a different index. The mixing tunes the critical stress of the bundle and the variation of critical stress with the amount of mixing is determined using a probabilistic method where the external load is increased quasistatically. In a special case which we illustrate, the critical stress is found to vary linearly with the mixing parameter. The critical exponents and power-law behavior of burst avalanche size distribution is found to remain unaltered due to mixing. © 2007 The American Physical Society.