Header menu link for other important links
Dynamics of history-dependent epidemics in temporal networks
, B. Kotnis, J. Kuri
Published in American Physical Society
PMID: 26382458
Volume: 92
Issue: 2
The structural properties of temporal networks often influence the dynamical processes that occur on these networks, e.g., bursty interaction patterns have been shown to slow down epidemics. In this paper, we investigate the effect of link lifetimes on the spread of history-dependent epidemics. We formulate an analytically tractable activity-driven temporal network model that explicitly incorporates link lifetimes. For Markovian link lifetimes, we use mean-field analysis for computing the epidemic threshold, while the effect of non-Markovian link lifetimes is studied using simulations. Furthermore, we also study the effect of negative correlation between the number of links spawned by an individual and the lifetimes of those links. Such negative correlations may arise due to the finite cognitive capacity of the individuals. Our investigations reveal that heavy-tailed link lifetimes slow down the epidemic, while negative correlations can reduce epidemic prevalence. We believe that our results help shed light on the role of link lifetimes in modulating diffusion processes on temporal networks. © 2015 American Physical Society.
About the journal
JournalData powered by TypesetPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
PublisherData powered by TypesetAmerican Physical Society
Open AccessNo