In this brief, we design Lyapunov-based control laws to achieve two multi-objective tasks for a network of open-loop unstable, nonholonomic mobile inverted pendulum (MIP) robots, using a connected undirected graph for inter-agent communication. Using the first protocol, translationally invariant formations are achieved along with the synchronization of attitudes and heading velocities to desired values. Using the second protocol, the robots move into a formation and asymptotically track a trajectory. The control laws are based on the kinematic model of the mobile robot, and control torques for the MIPs are extracted using a two-loop control architecture. Both the protocols guarantee boundedness of the linear heading velocity, which is necessary for the stability of the two-loop control architecture. The proposed control laws are experimentally validated on indigenously built MIP robots. © 1993-2012 IEEE.