Fabrication of deep holes (depth to diameter ratio >10) using electrical discharge drilling (EDD) has gained momentum in the areas of aerospace, automotive and biomedical industries. However, formation of recirculation zones in flushing channel causes accumulation of debris particles at higher depths of drilling. This leads to secondary discharges within the flushing channel resulting in excessive tool wear, dimensional inaccuracy and hole tapering. The present paper proposes a novel tool geometry having orifices at the bottom end of tool electrode with an aim to improve debris evacuation. The effectiveness of proposed method is established through CFD simulations and experiments. © 2021 CIRP