Header menu link for other important links
Rate of formation of caustics in heavy particles advected by turbulence
, V. Pandey, P. Perlekar, D. Mitra
Published in Royal Society Publishing
PMID: 35094553
Volume: 380
Issue: 2219
The rate of collision and the relative velocities of the colliding particles in turbulent flows are a crucial part of several natural phenomena, e.g. rain formation in warm clouds and planetesimal formation in protoplanetary discs. The particles are often modelled as passive, but heavy and inertial. Within this model, large relative velocities emerge due to formation of singularities (caustics) of the gradient matrix of the velocities of the particles. Using extensive direct numerical simulations of heavy particles in both two (direct and inverse cascade) and three-dimensional turbulent flows, we calculate the rate of formation of caustics, J as a function of the Stokes number (St). The best approximation to our data is J∼exp⁡ (-C/St), in the limit St→0 where C is a non-universal constant. This article is part of the theme issue 'Scaling the turbulence edifice (part 2)'. © 2022 The Author(s).
About the journal
JournalPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
PublisherRoyal Society Publishing