Header menu link for other important links
X
Realization of low power high-speed channel filters with stringent adjacent channel attenuation specifications for software radio receivers
J. Mathew, E.M.-K. Lai,
Published in
2007
Abstract
Finite impulse response (FIR) filtering is the most computationally intensive operation in the channelizer of a software defined radio (SDR) receiver. Higher order FIR channel filters are needed in the channelizer to meet the stringent adjacent channel attenuation specifications of wireless communications standards. The computational cost of FIR filters is dominated by the complexity of the coefficient multipliers. Even though many methods for reducing the complexity of filter multipliers have been proposed in literature, these works focused on lower order filters. This paper presents a coefficient-partitioning-based binary subexpression elimination method for realizing low power FIR filters. We show that the FIR filters implemented using proposed method consume less power and achieve speed improvement compared to existing filter implementations. Design examples of the channel filters employed in the Digital Advanced Mobile Phone System (D-AMPS) and Personal Digital Cellular (PDC) receivers show that the proposed method achieved 23% average reductions of full adder and power consumption and 23.3% reduction of delay over the best existing method. ©2007 IEEE.
About the journal
Journal2007 6th International Conference on Information, Communications and Signal Processing, ICICS