CD4+CD25+FoxP3+ regulatory T cells (Tregs) are key players for maintaining immune tolerance and for reducing the inflammation-mediated tissue damage following infection. However, Tregs also suppress protective immune responses to pathogens (including virus, bacteria, parasites, and fungi) and vaccines and enhance pathogen persistence by inhibiting the activation and functions of both innate and adaptive immune cells such as dendritic cells, macrophages, and T and B lymphocytes and by promoting immunosuppressive environment. Therefore, equilibrium in the Treg number and function is important to ensure pathogen clearance and protection from infection-associated immunopathologies. Recent advances in understanding of Treg influence on the outcome of infection opened new avenues to target them. Various small molecules, pharmacological inhibitors, monoclonal antibodies that target Tregs provided proof of concept in experimental models. The field also benefits from advances in other subjects, particularly oncology and autoimmunity, where Treg-targeted therapies are exploited in the clinic to a greater extent. The future research should aim at translating this preclinical success to human application. © 2017 John Wiley & Sons Ltd