Header menu link for other important links
X
Use of zero-frequency resonator for automatically detecting systolic peaks of photoplethysmogram signal
Published in Institution of Engineering and Technology
2019
Volume: 6
   
Issue: 3
Pages: 53 - 58
Abstract
This work investigates the application of zero-frequency resonator (ZFR) for detecting systolic peaks of photoplethysmogram (PPG) signals. Based on the authors' studies, they propose an automated noise-robust method, which consists of the central difference operation, the ZFR, the mean subtraction and averaging, the peak determination, and the peak rejection/acceptance rule. The method is evaluated using different kinds of PPG signals taken from the standard MIT-BIH polysomnographic database and Complex Systems Laboratory database and the recorded PPG signals at their Biomedical System Lab. The method achieves an average sensitivity (Se) of 99.95%, positive predictivity (Pp) of 99.89%, and overall accuracy (OA) of 99.84% on a total number of 116,673 true peaks. Evaluation results further demonstrate the robustness of the ZFR-based method for noisy PPG signals with a signal-to-noise ratio (SNR) ranging from 30 to 5 dB. The method achieves an average Se = 99.76%, Pp = 99.84%, and OA= 99.60% for noisy PPG signals with a SNR of 5 dB. Various results show that the method yields better detection rates for both noise-free and noisy PPG signals. The method is simple and reliable as compared with the complexity of signal processing techniques and detection performance of the existing detection methods. © 2019 Institution of Engineering and Technology. All rights reserved.
About the journal
JournalHealthcare Technology Letters
PublisherInstitution of Engineering and Technology
ISSN20533713