We prove that a proper holomorphic map between two nonplanar bounded symmetric domains of the same dimension, one of them being irreducible, is a biholomorphism. Our methods allow us to give a single, all-encompassing argument that unifies the various special cases in which this result is known. We discuss an application of these methods to domains having noncompact automorphism groups that are not assumed to act transitively. © 2014 Mathematical Sciences Publishers.