Header menu link for other important links
X
Singular quasilinear elliptic problems on unbounded domains
P. Drábek,
Published in
2014
Volume: 109
   
Pages: 148 - 155
Abstract
We prove the existence of a solution between an ordered pair of sub and supersolutions for singular quasilinear elliptic problems on unbounded domains. Further, we use this result to establish the existence of a positive solution to the problem {-Δpu=λK(x)f(u)in B1 c,u=0 on ∂B1, u(x)→0 as |x|→∞, where B1c={x ∈ ℝn||x|>1}, Δpu=div(|∇u|p-2∇u),1<p<n, λ is a positive parameter, K belongs to a class of functions which satisfy certain decay assumptions and f belongs to a class of (p-1)-subhomogeneous functions which may be singular at the origin, namely lim s→0+f(s)=-∞. Our methods can be also applied to establish a similar existence result when the domain is entire Rn. © 2014 Elsevier Ltd. All rights reserved.}, author_keywords={Infinite semipositone; p-Laplacian; Singular problems; Sub and supersolutions; Unbounded domains}, keywords={C (programming language), P-Laplacian; Semi-positone; Singular problem; Super-solutions; Unbounded domain, Computational mechanics}, funding_details={Grantová Agentura České RepublikyGrantová Agentura České Republiky, GA ČR, 13-00863S, EXLIZ - CZ.1.07/2.3.00/30.0013}, funding_details={European Social FundEuropean Social Fund, ESF}, funding_text_1={The first author was supported by the Grant Agency of Czech Republic, Project No. 13-00863S. The second author was funded by the project EXLIZ - CZ.1.07/2.3.00/30.0013, which is co-financed by the European Social Fund and the state budget of the Czech Republic.}, references={Lee, E.K., Shivaji, R., Ye, J., Classes of infinite semipositone systems (2009) Proc. Roy. Soc. Edinburgh Sect. A, 139 (4), pp. 853-865; Hai, D.D., Sankar, L., Shivaji, R., Infinite semipositone problems with asymptotically linear growth forcing terms (2012) Differential Integral Equations, 25 (1112), pp. 1175-1188; Lee, E.K., Sankar, L., Shivaji, R., Positive solutions for infinite semipositone problems on exterior domains (2011) Differential Integral Equations, 24 (910), pp. 861-875; Ambrosetti, A., Arcoya, D., Buffoni, B., Positive solutions for some semi-positone problems via bifurcation theory (1994) Differential Integral Equations, 7 (34), pp. 655-663; Anuradha, V., Hai, D.D., Shivaji, R., Existence results for superlinear semipositone BVP'S (1996) Proceedings of the American Mathematical Society, 124 (3), pp. 757-763; Arcoya, D., Zertiti, A., Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus (1994) Rend. Mat. Appl. (7), 14 (4), pp. 625-646; Castro, A., Gadam, S., Shivaji, R., Positive solution curves of semipositone problems with concave nonlinearities (1997) Proc. Roy. Soc. Edinburgh Sect. A, 127 (5), pp. 921-934; Castro, A., Shivaji, R., Positive solutions for a concave semipositone dirichlet problem (1998) Nonlinear Analysis, Theory, Methods and Applications, 31 (1-2), pp. 91-98. , PII S0362546X96001897; Clément, P., Sweers, G., Existence and multiplicity results for a semilinear elliptic eigenvalue problem (1987) Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 14 (1), pp. 97-121; Oruganti, S., Shi, J., Shivaji, R., Diffusive logistic equation with constant yield harvesting. I. Steady states (2002) Trans. Amer. Math. Soc., 354 (9), pp. 3601-3619. , electronic; Chhetri, M., Robinson, S.B., Existence and multiplicity of positive solutions for classes of singular elliptic PDEs (2009) J. Math. Anal. Appl., 357 (1), pp. 176-182; Ghergu, M., Radulescu, V., Sublinear singular elliptic problems with two parameters (2003) Journal of Differential Equations, 195 (2), pp. 520-536. , DOI 10.1016/S0022-0396(03)00105-0; Hai, D.D., On an asymptotically linear singular boundary value problems (2012) Topol. Methods Nonlinear Anal., 39 (1), pp. 83-92; Lee, E.K., Shivaji, R., Ye, J., Positive solutions for elliptic equations involving nonlinearities with falling zeroes (2009) Appl. Math. Lett., 22 (6), pp. 846-851; Ramaswamy, M., Shivaji, R., Ye, J., Positive solutions for a class of infinite semipositone problems (2007) Differential Integral Equations, 20 (12), pp. 1423-1433; Shi, J., Yao, M., On a singular nonlinear semilinear elliptic problem (1998) Royal Society of Edinburgh - Proceedings A, 128 (6), pp. 1389-1401; Zhang, Z., On a Dirichlet problem with a singular nonlinearity (1969) J. Math. Anal. Appl., 194, pp. 103-113; Leon, M.C., Existence results for quasilinear problems via ordered sub- and supersolutions (1997) Ann. Fac. Sci. Toulouse Math. (6), 6 (4), pp. 591-608; Tolksdorf, P., On the Dirichlet problem for quasilinear equations in domains with conical boundary points (1983) Comm. Partial Differential Equations, 8 (7), pp. 773-817; Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations (1984) J. Differential Equations, 51 (1), pp. 126-150; Chhetri, M., Principal Eigenvalue of P-Laplacian Operator in Exterior Domain, , http://dx.doi.org/10.1007/s00025-014-0386-2, Results. Math. Online; Ávila, A.I., Brock, F., Asymptotics at infinity of solutions for p-Laplace equations in exterior domains (2008) Nonlinear Anal., 69 (56), pp. 1615-1628; Serrin, J., Local behavior of solutions of quasi-linear equations (1964) Acta Math., 111, pp. 247-302; Drábek, P., Kufner, A., Nicolosi, F., (1997) Quasilinear Elliptic Equations with Degenerations and Singularities, 5. , de Gruyter Series in Nonlinear Analysis and Applications Walter de Gruyter & Co. Berlin; Daners, D., Drábek, P., A priori estimates for a class of quasi-linear elliptic equations (2009) Trans. Amer. Math. Soc., 361 (12), pp. 6475-6500; Lieberman, G.M., Boundary regularity for solutions of degenerate elliptic equations (1988) Nonlinear Anal., 12 (11), pp. 1203-1219; Vázquez, J.L., A strong maximum principle for some quasilinear elliptic equations (1984) Appl. Math. Optim., 12 (3), pp. 191-202}, correspondence_address1={Drábek, P.; Department of Mathematics and NTIS, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 8, 301 00 Plzeň, Czech Republic; email: pdrabek@kma.zcu.cz}, publisher={Elsevier Ltd}, issn={0362546X}, coden={NOAND}, language={English}, abbrev_source_title={Nonlinear Anal Theory Methods Appl}, document_type={Article}, source={Scopus},
About the journal
JournalNonlinear Analysis, Theory, Methods and Applications
ISSN0362546X
Open AccessNo